首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1967年   6篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1959年   1篇
排序方式: 共有137条查询结果,搜索用时 157 毫秒
11.
Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.  相似文献   
12.
There is clinical evidence linking asthma with the trace element, zinc (Zn). Using a mouse model of allergic inflammation, we have previously shown that labile Zn decreases in inflamed airway epithelium (Truong-Tran AQ, Ruffin RE, Foster PS, Koskinen AM, Coyle P, Philcox JC, Rofe AM, Zalewski PD. Am J Respir Cell Mol Biol 27: 286-296, 2002). Moreover, mild nutritional Zn deficiency worsens lung function. Recently, a number of proteins belonging to the Solute Carrier Family 39 (ZIP) and Solute Carrier Family 30 (ZnT) have been identified that bind Zn and regulate Zn homeostasis. Mice were sensitized, and subsequently aerochallenged, with ovalbumin to induce acute and chronic airway inflammation. Mice received 0, 54, or 100 microg of Zn intraperitoneally. Tissues were analyzed for Zn content and histopathology. Inflammatory cells were counted in bronchoalveolar lavage fluid. Cytokine and Zn transporter mRNA levels were determined by cDNA gene array and/or real-time PCR. Zn supplementation decreased bronchoalveolar lavage fluid eosinophils by 40 and 80%, and lymphocytes by 55 and 66%, in the acute and chronic models, respectively. Alterations in Zn transporter expression were observed during acute inflammation, including increases in ZIP1 and ZIP14 and decreases in ZIP4 and ZnT4. Zn supplementation normalized ZIP1 and ZIP14, but it did not affect mRNA levels of cytokines or their receptors. Our results indicate that inflammation-induced alterations in Zn transporter gene expression are directed toward increasing Zn uptake. Increases in Zn uptake may be needed to counteract the local loss of Zn in the airway and to meet an increased demand for Zn-dependent proteins. The reduction of inflammatory cells by Zn in the airways provides support for Zn supplementation trials in human asthmatic individuals.  相似文献   
13.

Biological pest control is becoming increasingly important for sustainable agriculture. Although many species of natural enemies are already being used commercially, efficient biological control of various pests is still lacking, and there is a need for more biocontrol agents. In this review, we focus on predatory soil mites, their role as natural enemies, and their biocontrol potential, mainly in vegetable and ornamental crops, with an emphasis on greenhouse systems. These predators are still underrepresented in biological control, but have several advantages compared to predators living on above-ground plant parts. For example, predatory soil mites are often easy and affordable to mass rear, as most of them are generalist predators, which also means that they may be used against various pests and can survive periods of pest scarcity by feeding on alternative prey or food. Many of them can also endure unfavourable conditions, making it easier for them to establish in various crops. Based on the current literature, we show that they have potential to control a variety of pests, both in greenhouses and in the field. However, more research is needed to fully understand and appreciate their potential as biocontrol agents. We review and discuss several methods to increase their efficiency, such as supplying them with alternative food and changing soil/litter structure to enable persistence of their populations. We conclude that predatory soil mites deserve more attention in future studies to increase their application in agricultural crops.

  相似文献   
14.

Agricultural experimentation is a world in constant evolution, spanning multiple scientific domains and affecting society at large. Even though the questions underpinning agricultural experiments remain largely the same, the instruments and practices for answering them have changed constantly during the twentieth century with the advent of new disciplines like molecular biology, genomics, statistics, and computing. Charting this evolving reality requires a mapping of the affinities and antinomies at work within the realm of agricultural research, and a consideration of the practices, tools and social and political structures in which agricultural experiments are grounded. Three main questions will be addressed to provide an overview of the complex world of agricultural research investigated by the special issue: What is an agricultural experiment? Who is an experimenter in agriculture? Where do agricultural experiments take place? It will become apparent that agricultural experiments have a wide relevance for human development as they touch upon concerns related to human health and nutrition, contribute to policy discussions, and can affect the social and political structures in which farming is embedded.

  相似文献   
15.
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.  相似文献   
16.
17.

Background

Clinical surveillance may have underestimated the real extent of the spread of the new strain of influenza A/H1N1, which surfaced in April 2009 originating the first influenza pandemic of the 21st century. Here we report a serological investigation on an influenza A/H1N1pdm outbreak in an Italian military ship while cruising in the Mediterranean Sea (May 24-September 6, 2009).

Methods

The contemporary presence of HAI and CF antibodies was used to retrospectively estimate the extent of influenza A/H1N1pdm spread across the crew members (median age: 29 years).

Findings

During the cruise, 2 crew members fulfilled the surveillance case definition for influenza, but only one was laboratory confirmed by influenza A/H1N1pdm-specific RT-PCR; 52 reported acute respiratory illness (ARI) episodes, and 183 reported no ARI episodes. Overall, among the 211 crew member for whom a valid serological result was available, 39.3% tested seropositive for influenza A/H1N1pdm. The proportion of seropositives was significantly associated with more crowded living quarters and tended to be higher in those aged <40 and in those reporting ARI or suspected/confirmed influenza A/H1N1pdm compared to the asymptomatic individuals. No association was found with previous seasonal influenza vaccination.

Conclusions

These findings underline the risk for rapid spread of novel strains of influenza A in confined environment, such as military ships, where crowding, rigorous working environment, physiologic stress occur. The high proportion of asymptomatic infections in this ship-borne outbreak supports the concept that serological surveillance in such semi-closed communities is essential to appreciate the real extent of influenza A/H1N1pdm spread and can constitute, since the early stage of a pandemic, an useful model to predict the public health impact of pandemic influenza and to establish proportionate and effective countermeasures.  相似文献   
18.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号