首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   13篇
  2021年   3篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   7篇
  2013年   2篇
  2012年   12篇
  2011年   9篇
  2010年   8篇
  2009年   12篇
  2008年   19篇
  2007年   16篇
  2006年   13篇
  2005年   19篇
  2004年   18篇
  2003年   12篇
  2002年   9篇
  2001年   9篇
  2000年   9篇
  1999年   18篇
  1996年   1篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   10篇
  1991年   5篇
  1990年   8篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有312条查询结果,搜索用时 321 毫秒
81.
The role of tyrosyl phosphorylation/dephosphorylation in the budding yeast Saccharomyces cerevisiae, whose genome does not encode typical tyrosine kinases, has long remained elusive. Nevertheless, several protein kinases phosphorylating poly(TyrGlu) substrates have been identified. In this work, we use the expression of the low molecular weight tyrosine phosphatase Stp1 from the distantly related yeast Schizosaccharomyces pombe, as a tool to investigate whether an unbalanced level of protein tyrosine phosphorylation affects S. cerevisiae growth and metabolism. We correlate the previously reported down-regulation of the phosphotyrosine level brought about by overexpression of Stp1 with a large number of phenotypes indicative of down-regulation of the Ras pathway. These phenotypes include reduction in both glucose- and acidification-induced GTP loading of the Ras2 protein and cAMP signaling, impaired growth on a non-fermentable carbon source, alteration of cell cycle parameters, delayed recovery from nitrogen starvation, increased heat-shock resistance, attenuated pseudohyphal and invasive growth. Genetic data suggest that Stp1 acts either at, or above, the level of Ras2, possibly on the Ira proteins. Consistently, Stp1 was found to bind to immunoprecipitated Ira2. Since a catalytically inactive mutant form of Stp1 (Stp1(C11S)) effectively binds to Ira2 without producing any effect on yeast physiology, we conclude that down-regulation of the Ras pathway by Stp1 requires its phosphatase activity. In conclusion, our data suggest a possible cross-talk between tyrosine phosphorylation and the Ras pathway in yeast.  相似文献   
82.
In a previous paper we observed a direct involvement of acylphosphatase in differentiation, associated with enhanced levels of the enzyme in the cell. We have here investigated the subcellular localization of the two known acylphosphatase isoforms during this process. We show that in C2C12 myoblast cells, muscle type acylphosphatase accumulates in the nucleus during differentiation. The same pattern of accumulation is observed also in K562 erythroleukemia cells, although at a lower extent: this fact indicates that this phenomenon is not restricted to muscular cells but rather it could be of general importance in the differentiative process. The common type acylphosphatase, showing an 8-fold increase in the cytoplasm during differentiation, does not accumulate in the nucleus, suggesting distinct roles of the two isoenzymes in this process.  相似文献   
83.
The addition of trifluoroethanol or hexafluoroisopropanol converts the apparent two-state folding of acylphosphatase, a small alpha/beta protein, into a multistate mechanism where secondary structure accumulates significantly in the denatured state before folding to the native state. This results in a marked acceleration of folding as revealed by following the intrinsic fluorescence and circular dichroism changes upon folding. The folding rate is at a maximum when the secondary-structure content of the denatured state corresponds to that of the native state, while further stabilization of secondary structure decreases the folding rate. These findings indicate that stabilization of intermediate structure can either enhance or retard folding depending on its nature and content of native-like interactions.  相似文献   
84.
The C2 domain is one of the most frequent and widely distributed calcium-binding motifs. Its structure comprises an eight-stranded beta-sandwich with two structural types as if the result of a circular permutation. Combining sequence, structural and modelling information, we have explored, at different levels of granularity, the functional characteristics of several families of C2 domains. At the coarsest level, the similarity correlates with key structural determinants of the C2 domain fold and, at the finest level, with the domain architecture of the proteins containing them, highlighting the functional diversity between the various sub-families. The functional diversity appears as different conserved surface patches throughout this common fold. In some cases, these patches are related to substrate-binding sites whereas in others they correspond to interfaces of presumably permanent interaction between other domains within the same polypeptide chain. For those related to substrate-binding sites, the predictions overlap with biochemical data in addition to providing some novel observations. For those acting as protein-protein interfaces, our modelling analysis suggests that slight variations between families are a result of not only complementary adaptations in the interfaces involved but also different domain architecture. In the light of the sequence and structural genomic projects, the work presented here shows that modelling approaches along with careful sub-typing of protein families will be a powerful combination for a broader coverage in proteomics.  相似文献   
85.
The N-terminal domain of HypF from Escherichia coli (HypF-N) is a 91 residue protein module sharing the same folding topology and a significant sequence identity with two extensively studied human proteins, muscle and common-type acylphosphatases (mAcP and ctAcP). With the aim of learning fundamental aspects of protein folding from the close comparison of so similar proteins, the folding process of HypF-N has been studied using stopped-flow fluorescence. While mAcP and ctAcP fold in a two-state fashion, HypF-N was found to collapse into a partially folded intermediate before reaching the fully folded conformation. Formation of a burst-phase intermediate is indicated by the roll over in the Chevron plot at low urea concentrations and by the large jump of intrinsic and 8-anilino-1-naphtalenesulphonic acid-derived fluorescence immediately after removal of denaturant. Furthermore, HypF-N was found to fold rapidly with a rate constant that is approximately two and three orders of magnitudes faster than ctAcP and mAcP, respectively. Differences between the bacterial protein and the two human counterparts were also found as to the involvement of proline isomerism in their respective folding processes. The results clearly indicate that features that are often thought to be relevant in protein folding are not highly conserved in the evolution of the acylphosphatase superfamily. The large difference in folding rate between mAcP and HypF-N cannot be entirely accounted for by the difference in relative contact order or related topological metrics. The analysis shows that the higher folding rate of HypF-N is in part due to the relatively high hydrophobic content of this protein. This conclusion, which is also supported by the highly significant correlation found between folding rate and hydrophobic content within a group of proteins displaying the topology of HypF-N and AcPs, suggests that the average hydrophobicity of a protein sequence is an important determinant of its folding rate.  相似文献   
86.
By using Gas Chromatography-Mass Spectrometry high concentrations of endogenous gamma-hydroxybutyric acid (GHB) have been demonstrated in the rat and mouse gastrointestinal tract, including stomach, small intestine and colon-rectum. GHB concentrations were many folds higher than those present in the brain. High GHB concentrations have been also found in the human operatory specimen of sigmoid colon. Since GHB administration has been found to modify gastrointestinal motility via GABA(B) receptors, the present results suggest that endogenous GHB might be involved in the GABA(B) receptor-mediated control of gastrointestinal function.  相似文献   
87.
Acylphosphatase, one of the smallest enzymes, is expressed in all organisms. It displays hydrolytic activity on acyl phosphates, nucleoside di- and triphosphates, aryl phosphate monoesters, and polynucleotides, with acyl phosphates being the most specific substrates in vitro. The mechanism of catalysis for human acylphosphatase (the organ-common type isoenzyme) was investigated using both aryl phosphate monoesters and acyl phosphates as substrates. The enzyme is able to catalyze phosphotransfer from p-nitrophenyl phosphate to glycerol (but not from benzoyl phosphate to glycerol), as well as the inorganic phosphate-H(2)18O oxygen exchange reaction in the absence of carboxylic acids or phenols. In short, our findings point to two different catalytic pathways for aryl phosphate monoesters and acyl phosphates. In particular, in the aryl phosphate monoester hydrolysis pathway, an enzyme-phosphate covalent intermediate is formed, whereas the hydrolysis of acyl phosphates seems a more simple process in which the Michaelis complex is attacked directly by a water molecule generating the reaction products. The formation of an enzyme-phosphate covalent complex is consistent with the experiments of isotope exchange and transphosphorylation from substrates to glycerol, as well as with the measurements of the Br?nsted free energy relationships using a panel of aryl phosphates with different structures. His-25 involvement in the formation of the enzyme-phosphate covalent complex during the hydrolysis of aryl phosphate monoesters finds significant confirmation in experiments performed with the H25Q mutated enzyme.  相似文献   
88.
Anaerobic bacteria of the genus Clostridia are a major threat to human and animal health, being responsible for pathologies ranging from food poisoning to gas gangrene. In each of these, the production of sophisticated exotoxins is the main cause of disease. The most powerful clostridial toxins are tetanus and botulinum neurotoxins, the causative agents of tetanus and botulism. They are structurally organized into three domains endowed with distinct functions: high affinity binding to neurons, membrane translocation and specific cleavage of proteins controlling neuroexocytosis. Recent discoveries regarding the mechanism of membrane recruitment and sorting of these neurotoxins within neurons make them ideal tools to uncover essential aspects of neuronal physiology in health and disease.  相似文献   
89.
We report here the purification of glycerotoxin from the venom of Glycera convoluta, a novel 320 kDa protein capable of reversibly stimulating spontaneous and evoked neurotransmitter release at the frog neuromuscular junction. However, glycerotoxin is ineffective at the murine neuromuscular junction, which displays a different subtype of voltage- dependent Ca(2+) channels. By sequential and selective inhibition of various types of Ca(2+) channels, we found that glycerotoxin was acting via Ca(v)2.2 (N-type). In neuroendocrine cells, it elicits a robust, albeit transient, influx of Ca(2+) sensitive to the Ca(v)2.2 blockers omega-conotoxin GVIA and MVIIA. Moreover, glycerotoxin triggers a Ca(2+) transient in human embryonic kidney (HEK) cells over-expressing Ca(v)2.2 but not Ca(v)2.1 (P/Q-type). Whole-cell patch-clamp analysis of Ca(v)2.2 expressing HEK cells revealed an up-regulation of Ca(2+) currents due to a leftward shift of the activation peak upon glycerotoxin addition. A direct interaction between Ca(v)2.2 and this neurotoxin was revealed by co-immunoprecipitation experiments. Therefore, glycerotoxin is a unique addition to the arsenal of tools available to unravel the mechanism controlling Ca(2+)-regulated exocytosis via the specific activation of Ca(v)2.2.  相似文献   
90.
The thermal stability of horse muscle acylphosphatase was investigated by measuring the inactivation constants at various pH and temperature values, and by differential spectra technique. This enzyme has high thermal stability in an acidic environment but is inactivated in an alkaline medium. It was found that the enzyme can be protected against such inactivation at pH 8.0 by increasing its concentration and the ionic strength of the solution. The effect of high urea concentrations on stability was also measured. It was found that spectral changes at 230 nm are related to urea inactivation of the enzyme, and that the enzymatic activity can be instantly and almost completely restored by dilution of the urea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号