首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   9篇
  2015年   10篇
  2014年   13篇
  2013年   15篇
  2012年   9篇
  2011年   13篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   2篇
  2006年   11篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
91.
The Chikungunya virus infection zones have now quickly spread from Africa to parts of Asia, North America and Europe. Originally thought to trigger a disease of only mild symptoms, recently Chikungunya virus caused large-scale fatalities and widespread economic loss that was linked to recent virus genetic mutation and evolution. Due to the paucity of information on Chikungunya immunological progression, we investigated the serum levels of 13 cytokines/chemokines during the acute phase of Chikungunya disease and 6- and 12-month post-infection follow-up from patients of the Italian outbreak. We found that CXCL9/MIG, CCL2/MCP-1, IL-6 and CXCL10/IP-10 were significantly raised in the acute phase compared to follow-up samples. Furthermore, IL-1β, TNF-α, Il-12, IL-10, IFN-γ and IL-5 had low initial acute phase levels that significantly increased at later time points. Analysis of symptom severity showed association with CXCL9/MIG, CXCL10/IP-10 and IgG levels. These data give insight into Chikungunya disease establishment and subsequent convalescence, which is imperative to the treatment and containment of this quickly evolving and frequently re-emerging disease.  相似文献   
92.
The tegument protein pp65 of human cytomegalovirus (HCMV) represents the major component of mature virus particles. Nevertheless, deletion of pp65 has been shown to have no effects on virus replication and morphogenesis in fibroblasts in vitro. We have studied the HCMV virion composition in the absence of pp65 and viral growth of a pp65 stop mutant in different cell types, including monocyte-derived macrophages. Two stop codons at amino acids 11 and 12 of pp65 were introduced by bacterial artificial chromosome mutagenesis into the endotheliotropic strain TB40/E. Clear changes of the tegument composition could be observed in purified mutant virus particles, where the amount of tegument protein pUL25 was drastically reduced. In addition, pUL69 and the virally encoded protein kinase UL97 were undetectable in the pp65 stop mutant. Expression of pUL69 in infected cells was unaltered while pUL25 accumulated in the absence of pp65, thus demonstrating that only incorporation into virus particles is dependent on pp65. Coimmunoprecipitation experiments using lysates of infected cells revealed an interaction between pUL69 and pp65. This interaction was verified in pull-down experiments using transfected cells, which showed that pp65 and pUL69 do not require the presence of other viral proteins for their interaction. We conclude that pp65 is required for the incorporation of other viral proteins into the virus particle and thus is involved in the protein-protein interaction network leading to normal tegument formation. When studying growth kinetics of the pp65 stop mutant in different cell types, we found a severe impairment of viral growth in monocyte-derived macrophages, showing for the first time a strong cell-specific role of pp65 in viral growth.Human cytomegalovirus (HCMV), a member of the Betaherpesvirinae subfamily, is a threatening pathogen for immunocompromised patients, such as transplant recipients, AIDS patients, and conatally infected infants (15). HCMV infection of individuals with a compromised immune system causes considerable morbidity and mortality after primary infection or reactivation from latency.Mature HCMV virions comprise four distinct structures: core, capsid, tegument, and envelope. The nucleocapsid consists of the core containing the approximately 240-kb linear double-stranded DNA genome, which is embedded in an icosahedral capsid. Between the envelope, a cellularly derived lipid membrane containing viral glycoproteins, and the nucleocapsid, a protein layer called tegument (26), is located. The tegument of HCMV is composed of at least 25 viral proteins. Tegument proteins have been proposed to act in several processes, such as immune evasion (reviewed in reference 30), release of viral DNA into the nucleus (6), and initiation and regulation of the viral replication cycle (3, 7, 16, 31, 41). However, for many of the tegument proteins, the morphogenetic or regulatory functions are unknown. An increasing number of host cell proteins, e.g., cytoskeletal proteins such as α- and β-actin, have also been detected in HCMV particles (4, 39). In addition to infectious virions, HCMV-infected cells generate two types of aberrant particles: noninfectious enveloped particles (NIEPs) and dense bodies (DBs) (18). The protein composition and morphology of NIEPs are nearly identical to those of mature virions; however, their lack of an electron-dense DNA-containing core allows discrimination of NIEPs from infectious virions by electron microscopy (18). DBs are fusion-competent enveloped particles lacking a nucleocapsid. They are composed primarily of the tegument protein pp65 (ppUL83) (4, 18, 39).For a long time, the herpesvirus tegument has been considered to be unstructured. Data mainly from alphaherpesviruses indicate that morphogenesis depends on an intricate network of tegument protein-protein interactions (reviewed in reference 23). Interestingly, for most tegument proteins of alphaherpesviruses relevant for primary tegumentation and envelopment, homologues have been found in HCMV, whereas there is much less homology between the proteins involved in secondary tegumentation and envelopment. Cryoelectron microscopic analyses of herpesvirus particles, including HCMV, provide evidence for an icosahedral symmetry and protein-protein complexes forming substructures, at least for the innermost part of the tegument (11).Remarkably, the most abundant tegument protein and major constituent of extracellular virions, pp65, is not essential for virus replication in fibroblasts in vitro. Deletion of pp65 in HCMV strain AD169 causes a complete loss of DB formation, while production of infectious virus in fibroblasts appears to be unaffected (34). Wild-type virus particle-associated pp65 is rapidly translocated to the nuclei of infected cells after penetration of the incoming virus (4, 33). Newly synthesized pp65 accumulates in both nucleus and cytoplasm at later stages of infection. In all, the precise function of pp65 during infection is not clear.During HCMV infection, pp65 is a major antigen for cellular immune responses. Besides its function as a structural component of the virus, pp65 seems to be involved in manipulation of the host''s immune system. Recent reports provide evidence that pp65 is involved in subverting the host immune response by mediating a decreased expression of major histocompatibility complex class II molecules (27). Microarray studies demonstrating an increase in the cellular antiviral cytokine response during infection with a pp65 deletion mutant suggested that pp65 is involved in downmodulation of beta interferon and of a number of chemokines (1, 8). However, most recent work demonstrates that not pp65 but the immediate-early 2 (IE2) gene product IE86 is responsible for the block of beta interferon induction during HCMV infection and that IE86 expression is delayed in the pp65 deletion mutant due to a decreased expression of pp71 (36). It has also been shown that pp65 can directly interact with NKp30, the natural killer (NK) cell-activating receptor, and that this interaction leads to a general inhibition of the killing ability of NK cells (2). Because of the requirement of cell-free pp65, the relevance of this interaction during HCMV infection in vivo is not entirely clear and needs to be investigated in more detail.Another feature of pp65 is the ability to interact with cellular as well as viral proteins. The interaction of pp65 with the cellular Polo-like kinase 1 (Plk1) results in an incorporation of Plk1 into virus particles. Plk1 is able to phosphorylate pp65 in vitro (14). Recently, it has been shown that pp65 interacts directly with the viral protein kinase pUL97 (20). pUL97 seems to be required for normal intranuclear distribution of pp65. Inhibition of the pUL97 kinase activity with maribavir or mutation of an essential amino acid in the kinase domain results in accumulation of pp65 in characteristic inclusions in the nuclei of infected as well as transfected cells (28).To extend our knowledge about pp65 and its function, we investigated the composition of endotheliotropic HCMV particles in the absence of the most abundant tegument protein, pp65. We hypothesized that other viral or cellular proteins might compensate for the lack of pp65 in virus particles, as described for tegument mutants of pseudorabies virus (25). The results presented here, using a pp65 stop codon mutant of the endotheliotropic HCMV strain TB40/E, demonstrate that in contrast to our hypothesis, incorporation of at least three other HCMV tegument proteins, pUL25, pUL69, and pUL97, is severely impaired when pp65 is lacking. For pUL69, a direct interaction with pp65 could be shown in infected as well as transfected cells. These results show that pp65 interacts with other viral tegument proteins during infection, which in turn is important for the incorporation of these proteins into mature virus particles. Finally, for the first time, we could show a cell-specific biological relevance of pp65 for growth of HCMV in monocyte-derived macrophages (MDM).  相似文献   
93.
Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder.  相似文献   
94.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.  相似文献   
95.
Human cytomegalovirus (HCMV) ORF UL73 encodes the envelope glycoprotein gpUL73-gN, which shows seven genotypes (gN-1, gN-2, gN-3a, gN-3b, gN-4a, gN-4b, gN-4c). The goal of this study was to determine retrospectively the distribution of gN variants in solid organ transplant recipients with HCMV infection and to establish an association with parameters important for monitoring post-transplantation clinical course during a follow-up of up to 2 years. Peripheral blood leukocytes from 40 solid organ transplant recipients were analysed for pp65-antigen by immunofluorescence and gN genotyped by sequencing or RFLP analysis. A correlation between gN genotypes and antigenemia peak was found, showing a highly significant difference between gN-1 and gN-4b variants (P<0.005). In particular, gN-1 seems to be associated with patients developing low level antigenemia (<50 pp65-positive cells/2 x 10(5) PBLs; PPV = 90%), whereas gN-4b predicts significantly higher values (>50 pp65-positive cells/2 x 10(5) PBLs; PPV = 80%). Furthermore, the onset of positive antigenemia is significantly earlier in patients infected with a gN-4b strain, compared with those infected by a gN-1 variant. Reported data further support a role for gN genotypes in HCMV pathogenesis. gN-1 and gN-4b show a significantly different virulence and could serve as early predictors for the progression of HCMV infection in transplant patients.  相似文献   
96.

Premise

Dominant in many ecosystems around the world, clonal plants can reach considerable ages and sizes. Due to their modular growth patterns, individual clonal plants (genets) can consist of many subunits (ramets). Since single ramets do not reflect the actual age of genets, the ratio between genet size (radius) and longitudinal annual growth rate (LAGR) of living ramets is often used to approximate the age of clonal plants. However, information on how the LAGR changes along ramets and how LAGR variability may affect age estimates of genets is still limited.

Methods

We assessed the variability of LAGR based on wood-section position along the ramets and on the duration of the growing season on three genetically distinct genets of Salix herbacea growing in the Northern Apennines (Italy). We compared genet ages estimated by dividing genet radius by the LAGRs of its ramets.

Results

LAGR increased significantly from the stem apex to the root collar; indicating that ramet growth rate decreased with time. Furthermore, a difference of ca. 2 weeks in the onset of the growing period did not impact LAGR. Considering the high LAGR variability, we estimated that the three genets started to grow between ~2100 and ~7000 years ago, which makes them the oldest known clones of S. herbacea even considering the most conservative age estimate.

Conclusions

Our findings indicate that analyzing ramets at the root collar provides an integrative measurement of their overall LAGR, which is crucial for estimating the age of genets.  相似文献   
97.
Rough‐and‐tumble play (RT) is a widespread phenomenon in mammals. Since it involves competition, whereby one animal attempts to gain advantage over another, RT runs the risk of escalation to serious fighting. Competition is typically curtailed by some degree of cooperation and different signals help negotiate potential mishaps during RT. This review provides a framework for such signals, showing that they range along two dimensions: one from signals borrowed from other functional contexts to those that are unique to play, and the other from purely emotional expressions to highly cognitive (intentional) constructions. Some animal taxa have exaggerated the emotional and cognitive interplay aspects of play signals, yielding admixtures of communication that have led to complex forms of RT. This complexity has been further exaggerated in some lineages by the development of specific novel gestures that can be used to negotiate playful mood and entice reluctant partners. Play‐derived gestures may provide new mechanisms by which more sophisticated communication forms can evolve. Therefore, RT and playful communication provide a window into the study of social cognition, emotional regulation and the evolution of communication systems.  相似文献   
98.
Biomarkers are subject to censoring whenever some measurements are not quantifiable given a laboratory detection limit. Methods for handling censoring have received less attention in genetic epidemiology, and censored data are still often replaced with a fixed value. We compared different strategies for handling a left‐censored continuous biomarker in a family‐based study, where the biomarker is tested for association with a genetic variant, , adjusting for a covariate, X. Allowing different correlations between X and , we compared simple substitution of censored observations with the detection limit followed by a linear mixed effect model (LMM), Bayesian model with noninformative priors, Tobit model with robust standard errors, the multiple imputation (MI) with and without in the imputation followed by a LMM. Our comparison was based on real and simulated data in which 20% and 40% censoring were artificially induced. The complete data were also analyzed with a LMM. In the MICROS study, the Bayesian model gave results closer to those obtained with the complete data. In the simulations, simple substitution was always the most biased method, the Tobit approach gave the least biased estimates at all censoring levels and correlation values, the Bayesian model and both MI approaches gave slightly biased estimates but smaller root mean square errors. On the basis of these results the Bayesian approach is highly recommended for candidate gene studies; however, the computationally simpler Tobit and the MI without are both good options for genome‐wide studies.  相似文献   
99.
The enzyme indoleamine 2,3‐dioxygenase 1 (IDO1) catalyses the initial, rate‐limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1‐dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine‐based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP‐1 and SHP‐2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine‐phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half‐life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM‐associated tyrosines with phospho‐mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 – but not ITIM2 mutant – did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen‐specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1‐dependent events will occur in a local microenvironment.  相似文献   
100.

Background  

The prevalence of coronary artery diseases is low among Down Syndrome (DS) patients and they rarely die of atherosclerotic complications. Histopathological investigations showed no increase in atherosclerosis, or even a total lack of atherosclerotic changes, in DS  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号