首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   9篇
  2015年   10篇
  2014年   13篇
  2013年   15篇
  2012年   9篇
  2011年   13篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   2篇
  2006年   11篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有135条查询结果,搜索用时 140 毫秒
11.
Neuropathic pain is a severe diabetes complication and its treatment is not satisfactory. It is associated with neuroinflammation-related events that participate in pain generation and chronicization. Prokineticins are a new family of chemokines that has emerged as critical players in immune system, inflammation and pain. We investigated the role of prokineticins and their receptors as modulators of neuropathic pain and inflammatory responses in experimental diabetes. In streptozotocin-induced-diabetes in mice, the time course expression of prokineticin and its receptors was evaluated in spinal cord and sciatic nerves, and correlated with mechanical allodynia. Spinal cord and sciatic nerve pro- and anti-inflammatory cytokines were measured as protein and mRNA, and spinal cord GluR subunits expression studied. The effect of preventive and therapeutic treatment with the prokineticin receptor antagonist PC1 on behavioural and biochemical parameters was evaluated. Peripheral immune activation was assessed measuring macrophage and T-helper cytokine production. An up-regulation of the Prokineticin system was present in spinal cord and nerves of diabetic mice, and correlated with allodynia. Therapeutic PC1 reversed allodynia while preventive treatment blocked its development. PC1 normalized prokineticin levels and prevented the up-regulation of GluN2B subunits in the spinal cord. The antagonist restored the pro-/anti-inflammatory cytokine balance altered in spinal cord and nerves and also reduced peripheral immune system activation in diabetic mice, decreasing macrophage proinflammatory cytokines and the T-helper 1 phenotype. The prokineticin system contributes to altered sensitivity in diabetic neuropathy and its inhibition blocked both allodynia and inflammatory events underlying disease.  相似文献   
12.
Applied Microbiology and Biotechnology - Iron exopolysaccharide nanoparticles were biogenerated during ferric citrate fermentation by Klebsiella oxytoca DSM 29614. Before investigating their...  相似文献   
13.
Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity). We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP) fused with the viral proteins IE-2, ppUL32 (pp150), and ppUL83 (pp65). In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI). The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus–infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.  相似文献   
14.
Mattiuzzo G  Takeuchi Y 《PloS one》2010,5(10):e13203

Background

Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.

Principal Findings

Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.

Conclusions

Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.  相似文献   
15.
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors whose interaction might influence disease risk. The aim of this study was to determine the effects of milk-feeding practices and the HLA-DQ genotype on intestinal colonization of Bacteroides species in infants at risk of CD development. This study included 75 full-term newborns with at least one first-degree relative suffering from CD. Infants were classified according to milk-feeding practice (breast-feeding or formula feeding) and HLA-DQ genotype (high or low genetic risk). Stools were analyzed at 7 days, 1 month, and 4 months by PCR and denaturing gradient gel electrophoresis (DGGE). The Bacteroides species diversity index was higher in formula-fed infants than in breast-fed infants. Breast-fed infants showed a higher prevalence of Bacteroides uniformis at 1 and 4 months of age, while formula-fed infants had a higher prevalence of B. intestinalis at all sampling times, of B. caccae at 7 days and 4 months, and of B. plebeius at 4 months. Infants with high genetic risk showed a higher prevalence of B. vulgatus, while those with low genetic risk showed a higher prevalence of B. ovatus, B. plebeius, and B. uniformis. Among breast-fed infants, the prevalence of B. uniformis was higher in those with low genetic risk than in those with high genetic risk. Among formula-fed infants, the prevalence of B. ovatus and B. plebeius was increased in those with low genetic risk, while the prevalence of B. vulgatus was higher in those with high genetic risk. The results indicate that both the type of milk feeding and the HLA-DQ genotype influence the colonization process of Bacteroides species, and possibly the disease risk.  相似文献   
16.
Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6′)-Ie aph (2′′)-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.  相似文献   
17.
18.
We have previously shown that only endotheliotropic strains of human cytomegalovirus (HCMV), such as TB40E, infect monocytes and impair their chemokine-driven migration. The proteins encoded by the UL128-131A region (UL128, UL130, and UL131A) of the HCMV genome, which assemble into a pentameric gH-gL-UL128-UL130-UL131A envelope complex, have been recognized as determinants for HCMV endothelial cell tropism. The genes for these proteins are typically inactivated by mutations in all fibroblast-adapted strains that have lost the diversified tropism of clinical isolates. By using mutant HCMV reconstituted from TB40E-derived bacterial artificial chromosomes (BAC) encoding a wild-type (wt) or mutated form of UL128, we show here that UL128-131A products are essential determinants of infection in monocytes and that pUL128, in particular, can block chemokine-driven motility. The virus BAC4, encoding wt UL128, established infection in monocytes, induced the intracellular retention of several chemokine receptors, and rendered monocytes unresponsive to different chemokines. In contrast, the virus BAC1, encoding a mutated UL128, failed to infect monocytes and to downregulate chemokine receptors. BAC1-exposed monocytes did not express immediate-early (IE) products, retained virions in cytoplasmic vesicles, and exhibited normal chemokine responsiveness. A potential role of second-site mutations in the observed phenotype was excluded by using the revertant viruses BAC1rep and BAC4mut. By incubating noninfected monocytes with soluble recombinant pUL128, we observed both the block of migration and the chemokine receptor internalization. We propose that among the gH-gL-UL128-UL130-UL131A complex subunits, the UL128 protein is the one that triggers monocyte paralysis.  相似文献   
19.
Multiple sclerosis (MS) is a chronic auto‐immune disease characterized by a damage to the myelin component of the central nervous system. Self‐antigens created by aberrant glycosylation have been described to be a key component in the formation of auto‐antibodies. CSF114(Glc) is a synthetic glucopeptide detecting in vitro MS‐specific auto‐antibodies, and it is actively used in diagnostics and research to monitor and quantify MS‐associated Ig levels. We reasoned that antibodies raised against this probe could have been relevant for MS. We therefore screened a human Domain Antibody library against CSF114(Glc) using magnetic separation as a panning method. We obtained and described several clones, and the one with the highest signals was produced as a 6×His‐tagged protein to properly study the binding properties as a soluble antibody. By surface plasmon resonance measurements, we evidenced that our clone recognized CSF114(Glc) with high affinity and specific for the glucosylated peptide. Kinetic parameters of peptide–clone interaction were calculated obtaining a value of KD in the nanomolar range. Harboring a human framework, this antibody should be very well tolerated by human immune system and may represent a valuable tool for MS diagnosis and therapy, paving the way to new research strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
20.
Maintaining the architecture, size and composition of an intact stem cell (SC) compartment is crucial for tissue homeostasis and regeneration throughout life. In mammalian skin, elevated expression of the anti‐apoptotic Bcl‐2 protein has been reported in hair follicle (HF) bulge SCs (BSCs), but its impact on SC function is unknown. Here, we show that systemic exposure of mice to the Bcl‐2 antagonist ABT‐199/venetoclax leads to the selective loss of suprabasal BSCs (sbBSCs), thereby disrupting cyclic HF regeneration. RNAseq analysis shows that the pro‐apoptotic BH3‐only proteins BIM and Bmf are upregulated in sbBSCs, explaining their addiction to Bcl‐2 and the marked susceptibility to Bcl‐2 antagonism. In line with these observations, conditional knockout of Bcl‐2 in mouse epidermis elevates apoptosis in BSCs. In contrast, ectopic Bcl‐2 expression blocks apoptosis during HF regression, resulting in the accumulation of quiescent SCs and delaying HF growth in mice. Strikingly, Bcl‐2‐induced changes in size and composition of the HF bulge accelerate tumour formation. Our study identifies a niche‐instructive mechanism of Bcl‐2‐regulated apoptosis response that is required for SC homeostasis and tissue regeneration, and may suppress carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号