首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   7篇
  2019年   21篇
  2018年   13篇
  2017年   9篇
  2016年   7篇
  2015年   10篇
  2014年   6篇
  2013年   11篇
  2012年   13篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有159条查询结果,搜索用时 140 毫秒
71.
MSCs (mesenchymal stem cells) have attracted attention as a promising tool for regenerative medicine and transplantation therapy. MSCs exert neuroprotective effects by secreting a number of factors in vitro and in vivo. Similar characteristics are found in ADSCs (adipose‐derived stem cells) and BMSCs (bone marrow stromal cells). Multipotent capability, easy accessibility and rapid proliferation of ADSCs have been established. Our main objective was to compare cell viability, growth rate, expression of neurotrophic factors and nestin genes in ADSCs and BMSCs. Cell doubling time and proliferation rate indicate that ADSCs has a higher proliferation rate than BMSCs. ADSCs and BMSCs express a similar pattern of CD71 and CD90 markers. Nestin immunostaining showed that ADSCs and BMSCs are immunopositive. The expression of neurotrophic factors genes in ADSCs proved similar to that of BMSCs genes. Thus adipose tissue stem cells with a high proliferation rate can express nestin and neurotrophic factor genes. Therefore ADSCs may be useful in future cell replacement therapies and help improve neurodegenerative diseases.  相似文献   
72.
Isoleucine, together with leucine and valine, constitutes the group of branched-chain amino acids (BCAAs). BCAAs are transported from the blood into the brain parenchyma, where they can serve several distinct functions. Since brain tissue is known to oxidatively metabolize BCAAs to CO2, they are considered as fuel material in brain energy metabolism. Also, in the case of leucine, cultured astrocytes have been reported to be able to completely oxidize BCAA. While the metabolism of leucine by astroglia-rich primary culture (APC) has already been studied in detail, the metabolic fates of isoleucine and valine in these cells remained to be identified. Therefore, in the present study an NMR analysis was performed of 13C-labelled metabolites generated in the catabolism of [U-13C]Ile by astrocytes and released by them into the incubation medium. APC potently removed isoleucine from the medium and metabolized it. The major isoleucine metabolites released from APC are 2-oxo-3-methylvalerate, 2-methylbutyrate, 3-hydroxy-2-methylbutyrate and propionate. To a lesser extent, APC generate and release also [2,3-13C]glutamine, [4,5-13C]glutamine and 13C-labelled isotopomers of lactate and citrate. These results show that APC can release into the extracellular milieu catabolites and several TCA cycle dependent metabolites resulting from the degradation of isoleucine. Special issue article in honor of Dr. George DeVries.  相似文献   
73.
The occurrence of Tomato yellow leaf curl virus (TYLCV; genus Begomovirus, family Geminiviridae) in the major tomato‐growing areas of Iran was determined using TAS‐ELISA and PCR. The nucleotide sequences of the coat protein (CP) gene and intergenic region (IR) of eight Iranian isolates were determined. CP nucleotide identities among the Iranian isolates were 96–98%, and showed 94–96% identity with TYLCV‐IR [IR:Ira:98] and TYLCV‐IL [IL:Reo:86]. However, they showed low identity (68–69%) with ToLCIRV‐[IR:Ira]. Sequence analyses of IR indicated that seven Iranian isolates had sequence identity of 93–100% with each other, and 76% identity with the Jiroft isolate; identities of 75–79% with TYLCV‐IR[IR:Ira:98] were observed in every case, and 59–62% identity with ToLCIRV‐[IR:Ira]. The IR nucleotide sequences of Iranian isolates showed 92–93% identity with TYLCV‐IL[IL:Reo:86], except the Jiroft isolate (75%). The CP and IR sequence analyses suggested that eight Iranian TYLCV isolates probably differ from ToLCIRV‐[IR:Ira]. Based on IR sequence comparisons and phylogenetic analyses, the Iranian isolates were divided into two groups. The first major group (A), consists of seven virus isolates, was most closely related to TYLCV‐IL[IL:Reo:86], and relatively divergent from TYLCV‐IR [IR:Ira:98] and ToLCIRV‐[IR:Ira]. However, the Jiroft isolate from group B did not show high similarity with TYLCV‐IR[IR:Ira:98], ToLCIRV‐[IR:Ira], and TYLCV‐IL[IL:Reo:86], suggesting that the isolate may be a divergent variant. The differences are in a range that suggests different strains or species from TYLCV‐IR[IR:Ira:98] and ToLCIRV‐[IR:Ira] are probably associated with tomato yellow leaf curl disease in Iran.  相似文献   
74.
Chitosan biopolymer has been extensively applied in direct methanol fuel cells (DMFCs) as a potential replacement to conventional Nafion membrane for its considerably reduced methanol crossover. Here, we computationally explored the influences of methanol concentration, temperature, and pH parameters upon the nanostructure and dynamics, particularly the methanol crossover, in chitosan proton‐exchange membrane (PEM) through molecular dynamics simulations. Theoretical results demonstrated the increased swelling and radius of gyration of chitosan chains at higher concentrations. Structural examinations further revealed that an increase in methanol loading weakened the water interactions with chitosan functionalities (amine? NH2, hydroxyl? OH, and methoxy? CH2OH) whereas improved the methanol affinities toward chitosan, reflecting higher methanol sorption capability of chitosan at enhanced concentrations. Additionally, it was found that interactions between solvents and chitosan strengthened under acidic pH conditions on account of amine protonation. The water diffusivity inside the swollen chitosan diminished by increasing CH3OH uptake, and in contrast diffusivity of methanol was noted to enhance. Furthermore, it was observed that an enhancement in temperature or a decrease in pH intensified solvent mobility. These insights imply that supplying methanol‐concentrated and/or acidic feed solutions into DMFCs based on chitosan PEMs could lower membrane performance due to the significant methanol transport dynamics.  相似文献   
75.
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti‐CF and anti‐enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti‐CF and antitoxin immunogenicity was then assessed. To achieve high‐level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti‐CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
  相似文献   
76.
The purpose of this study was to evaluate T-cell immunity markers using serial post-transplantation monitoring of cytokine-producing cells during the first post-transplant months for the prediction of acute rejection and potentially chronic rejection of kidney allograft. We followed 57 kidney allograft recipients for meanly 3 years post-transplantation. Blood samples were collected pre-transplant, 2, 4 and 12 weeks post-transplant. The frequencies of IL-10-, IL-17- and IFN-γ-producing cells were determined in all time-points using ELISPOT assay. The results of ELISpot monitoring and levels of IL-23 and TGF-β were compared between recipients with acute (n = 12) or chronic rejection episodes and patients with stable graft function (n = 45). In all post-transplant time-points, significantly high frequencies of IFN-γ- and IL-17-producing cells and low frequency of IL-10-producing cells were observed in rejection group versus patients with stable graft function (P<0.0001). TheROCcurve analysis for determining the reliability of cytokine-producing cells for the prediction of acute rejection revealed that AUC was 0.046 for IL-10 (P<0.001), 0.927 for IL-17 (P<0.001) and 0.929 for INF-γ-producing cells (P<0.001). Our results indicate that analyzing the frequencies of INF-γ/IL-10/IL-17-producing cells may define a reliable panel for the prediction of acute rejection within the first post-transplant year which could also be applicable for the prediction of chronic rejection episodes.  相似文献   
77.
The NaChBac sodium channel from Bacillus halodurans is a homologue of eukaryotic voltage-gated sodium channels. It can be solubilized in a range of detergents and consists of four identical subunits assembled as a tetramer. Sodium channels are relatively flexible molecules, adopting different conformations in their closed, open and inactivated states. This study aimed to design and construct a mutant version of the NaChBac protein that would insert into membranes and retain its folded conformation, but which would have enhanced stability when subjected to thermal stress. Modelling studies suggested a G219S mutant would have decreased conformational flexibility due to the removal of the glycine hinge around the proposed gating region, thereby imparting increased resistance to unfolding. The mutant expressed in Escherichia coli and purified in the detergent dodecyl maltoside was compared to wildtype NaChBac prepared in a similar manner. The mutant was incorporated into the membrane fraction and had a nearly identical secondary structure to the wildtype protein. When the thermal unfolding of the G219S mutant was examined by circular dichroism spectroscopy, it was shown to not only have a Tm approximately 10 degrees C higher than the wildtype, but also in its unfolded state it retained more ordered helical structure than did the wildtype protein. Hence the G219S mutant was shown to be, as designed, more thermally stable.  相似文献   
78.
79.
80.
Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号