首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   7篇
  2019年   21篇
  2018年   13篇
  2017年   9篇
  2016年   7篇
  2015年   10篇
  2014年   6篇
  2013年   11篇
  2012年   13篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有159条查询结果,搜索用时 37 毫秒
121.
Multiple sclerosis is considered a prototype inflammatory autoimmune disorder of the CNS. Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein is one of the best‐characterized animal models of multiple sclerosis. Comprehensive understanding of gene expression in EAE can help identify genes that are important in drug response and pathogenesis. We applied a 2‐DE‐based proteomics approach to analyze the protein expression pattern of the brain in healthy and EAE samples. Of more than 1000 protein spots we analyzed, 70 showed reproducible and significant changes in EAE compared to controls. Of these, 42 protein spots could be identified using MALDI TOF‐TOF‐MS. They included mitochondrial and structural proteins as well as proteins involved in ionic and neurotransmitter release, blood barriers, apoptosis, and signal transduction. The possible role of these proteins in the responses of mice to animal models of multiple sclerosis is discussed.  相似文献   
122.
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs.  相似文献   
123.
124.
125.
Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.  相似文献   
126.

Background  

"Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by " Ca. Phytoplasma aurantifolia".  相似文献   
127.
Embryonic stem cells (ESCs) are at the center stage of intense research, inspired by their potential to give rise to all cell types of the adult individual. This property makes ESCs suitable candidates for generating specialized cells to replace damaged tissue lost after injury or disease. However, such clinical applications require a detailed insight of the molecular mechanisms underlying the self-renewal, expansion and differentiation of stem cells. This has gained further relevance since the introduction of induced pluripotent stem cells (iPSCs), which are functionally very similar to ESCs. The key property that iPSCs can be derived from somatic cells lifts some of the major ethical issues related to the need for embryos to generate ESCs. Yet, this has only increased the need to define the similarity of iPSCs and ESCs at the molecular level, both before and after they are induced to differentiate. In this article, we describe the proteomic approaches that have been used to characterize ESCs with regard to self-renewal and differentiation, with an emphasis on signaling cascades and histone modifications. We take this as a lead to discuss how quantitative proteomics can be deployed to study reprogramming and iPSC identity. In addition, we discuss how emerging proteomic technologies can become a useful tool to monitor the (de)differentiation status of ESCs and iPSCs.  相似文献   
128.
129.
There is a poorly known rookery of green turtles (Chelonia mydas) nesting in sandy beaches of Chabahar town, northeastern Gulf of Oman, Iran.This study has been carried out to evaluate nesting activity of this small rookery in 2014 nesting season (June to October). In this study, total clutches were collected and transferred to an artificial hatchery. The peak of nesting occurred from the third parts of August to the end of September. Mean CCL was 106.3 ± 6 cm and mean CCW was 94.5 ± 5 cm. Females laid on average of 99.42 ± 47.8 eggs per clutch. The mean inter-nesting interval was 18.5 days. The observed clutch frequency was 3.4. Mean hatching success was 36.63 ± 4.1%. The incubation period was 61.07 ± 5.4 days. Nest status evaluation represented that major causes for the failure was unhatched egg with no obvious embryo followed by unhatched eggs with obvious but undeveloped embryos > unhatched eggs with developed embryos > hatched eggs but dead embryos. The results achieved in this study are a valuable contribution to cognition of the reproductive ecology of the green turtle population globally and regionally.  相似文献   
130.
Refolding of cysteine-rich protein for establishing native conformation and a biologically active form is the most challenging step in recombinant protein synthesis. In this study, expressed vascular endothelial growth factor-A (VEGF-A), as a cysteine-rich protein, in a prokaryotic expression cell was refolded based on computer simulation technique and multiple chemical additive-based buffers to recover its biologically active form. For this purpose, cloned and expressed VEGF-A in Escherichia coli BL21 (DE3) was purified and dialyzed by a basic buffer containing nine diverse chemical additives. In parallel with the evaluations of the applied additives, professional computer simulation software was also used. The activity of refolded protein was evaluated in differentiation of mesenchymal stem cells (MSCs) to the endothelial cells (ECs). The results showed that dialyzing the produced recombinant VEGF-A in chemical additive-based buffers containing cysteine, 1, 4-dithiothreitol (DTT), arginine, and Triton X-100 led to efficient VEGF-A refolding. The results of flowcytometry analysis indicated that CD31 and CD144 as the specific ECs markers in VEGF-A treated MSCs were 31 and 73%, respectively. Protein refolding method using chemical additive-based buffers containing cysteine, DTT, arginine and Triton X-100 was the best accessible technique for refolding cysteine-rich recombinant VEGF-A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号