首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   113篇
  国内免费   2篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   14篇
  2018年   16篇
  2017年   18篇
  2016年   20篇
  2015年   38篇
  2014年   41篇
  2013年   37篇
  2012年   72篇
  2011年   60篇
  2010年   41篇
  2009年   36篇
  2008年   49篇
  2007年   53篇
  2006年   47篇
  2005年   59篇
  2004年   65篇
  2003年   48篇
  2002年   38篇
  2001年   9篇
  2000年   11篇
  1999年   14篇
  1998年   9篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   15篇
  1993年   11篇
  1992年   18篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   14篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1976年   7篇
  1973年   2篇
  1972年   3篇
  1961年   2篇
排序方式: 共有988条查询结果,搜索用时 218 毫秒
81.
82.
In petals of Silene dioica plants, an enzyme has been demonstrated which catalyses the transfer of the arabinose moiety of UDP-arabinose to the hydroxyl group on the 2″-position of the carbon-carbon bound glucose of isovitexin. The presence of this arabinosyltransferase activity is controlled by the dominant allele glA. Maximal activity takes place at pH 7.2–7.5; the reaction is stimulated by the divalent metal ions Mg and Mn. For optimal solubilization of the enzyme, Triton X-100 is necessary. Substrate specificity and kinetic behaviour have been investigated.  相似文献   
83.
Flavour development in dairy fermentations, most notably cheeses, results from a series of (bio)chemical processes in which the starter cultures provide the enzymes. Particularly the enzymatic degradation of proteins (caseins) leads to the formation of key-flavour components, which contribute to the sensory perception of dairy products. More specifically, caseins are degraded into peptides and amino acids and the latter are major precursors for volatile aroma compounds. In particular, the conversion of methionine, the aromatic and the branched-chain amino acids are crucial. A lot of research has focused on the degradation of caseins into peptides and free amino acids, and more recently, enzymes involved in the conversion of amino acids were identified. Most data are generated on Lactococcus lactis, which is the predominant organism in starter cultures used for cheese-making, but also Lactobacillus, Streptococcus, Propionibacterium and species used for surface ripening of cheeses are characterised in their flavour-forming capacity. In this paper, various enzymes and pathways involved in flavour formation will be highlighted and the impact of these findings for the development of industrial starter cultures will be discussed.  相似文献   
84.
The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain alpha-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3' terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain alpha-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions.  相似文献   
85.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   
86.
87.
Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.  相似文献   
88.
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA facilitates the maturation of outer membrane porins. Although the PPIase activity exhibited by one of its two parvulin-like domains is dispensable for this function, the chaperone activity residing in the non-PPIase regions of SurA, a sizable N-terminal domain and a short C-terminal tail, is essential. Unlike most cytoplasmic chaperones SurA is selective for particular substrates and recognizes outer membrane porins synthesized in vitro much more efficiently than other proteins. Thus, SurA may be specialized for the maturation of outer membrane proteins. We have characterized the substrate specificity of SurA based on its natural, biologically relevant substrates by screening cellulose-bound peptide libraries representing outer membrane proteins. We show that two features are critical for peptide binding by SurA: specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins than in other proteins. For the first time this sufficiently explains the capability of SurA to discriminate between outer membrane protein and non-outer membrane protein folding intermediates. Furthermore, peptide binding by SurA requires neither an active PPIase domain nor the presence of proline, indicating that the observed substrate specificity relates to the chaperone function of SurA. Finally, we show that SurA is capable of associating with the outer membrane. Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps.  相似文献   
89.
The apparent complexity of biology increases as more biomolecular interactions that mediate function become known. We have used NMR spectroscopy and molecular modeling to provide direct evidence that tetrameric platelet factor-4 (PF4) and dimeric interleukin-8 (IL8), two members of the CXC chemokine family, readily interact by exchanging subunits and forming heterodimers via extension of their antiparallel beta-sheet domains. We further demonstrate using functional assays that PF4/IL8 heterodimerization has a direct and significant consequence on the biological activity of both chemokines. Formation of heterodimers enhances the anti-proliferative effect of PF4 on endothelial cells in culture, as well as the IL8-induced migration of CXCR2 vector-transfected Baf3 cells. These results suggest that CXC chemokine biology, and perhaps cytokine biology in general, may be functionally modulated at the molecular level by formation of heterodimers. This concept, in turn, has implications for designing chemokine/cytokine variants with modified biological properties.  相似文献   
90.
Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号