首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3930篇
  免费   331篇
  国内免费   1篇
  2023年   17篇
  2021年   58篇
  2020年   34篇
  2019年   40篇
  2018年   83篇
  2017年   53篇
  2016年   91篇
  2015年   162篇
  2014年   207篇
  2013年   202篇
  2012年   295篇
  2011年   262篇
  2010年   177篇
  2009年   155篇
  2008年   220篇
  2007年   240篇
  2006年   209篇
  2005年   220篇
  2004年   174篇
  2003年   205篇
  2002年   178篇
  2001年   42篇
  2000年   32篇
  1999年   32篇
  1998年   46篇
  1997年   37篇
  1996年   28篇
  1995年   29篇
  1994年   22篇
  1993年   27篇
  1992年   15篇
  1991年   31篇
  1990年   40篇
  1989年   24篇
  1988年   30篇
  1987年   29篇
  1986年   16篇
  1985年   17篇
  1984年   22篇
  1983年   19篇
  1982年   23篇
  1981年   24篇
  1980年   19篇
  1978年   15篇
  1977年   16篇
  1975年   13篇
  1974年   16篇
  1969年   14篇
  1968年   13篇
  1967年   19篇
排序方式: 共有4262条查询结果,搜索用时 218 毫秒
991.
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.  相似文献   
992.
993.
Activity of carnosinase (CN1), the only dipeptidase with substrate specificity for carnosine or homocarnosine, varies greatly between individuals but increases clearly and significantly with age. Surprisingly, the lower CN1 activity in children is not reflected by differences in CN1 protein concentrations. CN1 is present in different allosteric conformations in children and adults since all sera obtained from children but not from adults were positive in ELISA and addition of DTT to the latter sera increased OD450 values. There was no quantitative difference in the amount of monomeric CN1 between children and adults. Further, CN1 activity was dose dependently inhibited by homocarnosine. Addition of 80 μM homocarnosine lowered V max for carnosine from 440 to 356 pmol/min/μg and increased K m from 175 to 210 μM. The estimated K i for homocarnosine was higher (240 μM). Homocarnosine inhibits carnosine degradation and high homocarnosine concentrations in cerebrospinal fluid (CSF) may explain the lower carnosine degradation in CSF compared to serum. Because CN1 is implicated in the susceptibility for diabetic nephropathy (DN), our findings may have clinical implications for the treatment of diabetic patients with a high risk to develop DN. Homocarnosine treatment can be expected to reduce CN1 activity toward carnosine, resulting in higher carnosine levels.  相似文献   
994.
The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40–370. While the N-terminal part of that minimal region (residues 47–247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248–370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension.  相似文献   
995.
Neural responses to tones in the mammalian primary auditory cortex (A1) exhibit adaptation over the course of several seconds. Important questions remain about the taxonomic distribution of multi-second adaptation and its possible roles in hearing. It has been hypothesized that neural adaptation could explain the gradual “build-up” of auditory stream segregation. We investigated the influence of several stimulus-related factors on neural adaptation in the avian homologue of mammalian A1 (field L2) in starlings (Sturnus vulgaris). We presented awake birds with sequences of repeated triplets of two interleaved tones (ABA–ABA–…) in which we varied the frequency separation between the A and B tones (ΔF), the stimulus onset asynchrony (time from tone onset to onset within a triplet), and tone duration. We found that stimulus onset asynchrony generally had larger effects on adaptation compared with ΔF and tone duration over the parameter range tested. Using a simple model, we show how time-dependent changes in neural responses can be transformed into neurometric functions that make testable predictions about the dependence of the build-up of stream segregation on various spectral and temporal stimulus properties.  相似文献   
996.
997.
Combined phylogenetic, physiological, and biochemical approaches revealed that differences in defense‐related responses among 17 species belonging to the Gracilariaceae were consistent with their evolutionary history. An oxidative burst response resulting from activation of NADPH oxidase was always observed in two of the subgenera of Gracilaria sensu lato (Gracilaria, Hydropuntia), but not in Gracilariopsis and in species related to Gracilaria chilensis (“chilensis” clade). On the other hand, all species examined except Gracilaria tenuistipitata var. liui and Gracilariopsis longissima responded with up‐regulation of agar oligosaccharide oxidase to an challenge with agar oligosaccharides. As indicated by pharmacological experiments conducted with Gracilaria chilensis and Gracilaria sp. “dura,” the up‐regulation of agar oligosaccharide oxidase involved an NAD(P)H‐dependent signaling pathway, but not kinase activity. By contrast, the activation of NADPH oxidase requires protein phosphorylation. Both responses are therefore independent, and the agar oligosaccharide‐activated oxidative burst evolved after the capacity to oxidize agar oligosaccharide, probably providing additional defensive capacity to the most recently differentiated clades of Gracilariaceae. As demonstrated with Gracilaria gracilis, Gracilaria dura, and Gracilariopsis longissima, the different responses to agar oligosaccharides allow for a fast and nondestructive distinction among different clades of gracilarioids that are morphologically convergent. Based upon sequences of the chloroplast‐encoded rbcL gene, this study suggests that at least some of the samples from NW America recorded as Gs. lemanaeiformis are probably Gs. chorda. Moreover, previous records of Gracilaria conferta from Israel are shown to be based upon misidentification of Gracilaria sp. “dura,” a species that belongs to the Hydropuntia subgenus.  相似文献   
998.
A 35-day laboratory incubation experiment at 25°C was carried out to investigate the effects of Zn and P addition on microbial biomass C, N, and P in a Zn deficient calcareous soil, sampled at 15–40 cm depth in Central Anatolia, Turkey, amended with glucose. The underlying hypothesis was that P, but also Zn addition leads to a decrease in the microbial biomass C/N ratio. In the glucose-amended soil, the microbial biomass C/N ratio was not affected by the addition of P at day 5. At day 35 in this treatment, the significant P addition × day interaction revealed a significant decrease in the microbial biomass C/N ratio from 11.3 to 8.9. In the glucose-amended soil, Zn addition also had generally significant negative effects on microbial biomass C in comparison with the pure glucose treatment. A similar tendency was observed for microbial biomass N and consequently the microbial biomass C/N ratio remained unaffected. No evidence was found in the present incubation experiment that the microbial community suffered from Zn deficiency.  相似文献   
999.
We hypothesized that sub-optimal root zone temperature (RZT) will cause a reduction in the bioactive components contents, adversely affect PS II and hinder uptake/partitioning of mineral elements in the “Light Green Variant” of the African snake tomato (Trichosanthes cucumerina L.). Three RZT temperatures (20, 25 and 30°C) were evaluated in a digitally controlled growth chamber. Results showed that for all the mineral nutrients analyzed (Ca, Mg, P, K, Fe and Mn), the amounts absorbed by the plant increase as RZT increases with each nutrient displaying different characteristics with respect to the quantity partitioned into root, stem and leaf at the different RZT. At sub-optimal RZT (20°C), significantly higher amounts of Ca and K were found in the root, whereas at normal RZT (25 and 30°C) higher amounts of Ca were recorded in the stem, and about 50% of the amounts in the stem were found in the leaves. For all the RZT, the amounts of Mg in the leaves were significantly higher than in the root and stem, while the amounts in the stems were also significantly higher than the amounts in the roots. At normal RZT (25 and 30°C) almost equal amounts of P were present in the root, stem and leaf. The amounts of phenolics, ascorbic acid, chlorophyll a and b and total chlorophyll increase as the RZT increases. Photosystem analyses showed that at 30°C the F v/F m (relative photochemical efficiency) was 0.76, while at 20 and 25°C the values were 0.35 and 0.60, respectively. The F v/F m value (0.35) obtained at 20°C confirmed the adverse effects of sub-optimal RZT on the photosystem II (PS II). Photosynthetic measurements showed that as the RZT increased, A (net photosynthetic efficiency), E (transpiration rate), C i (intercellular carbon dioxide concentration) and g 1 (stomata conductance) also increased. We postulate that the higher E and g 1 at high RZT have a great physiological implication on plant performance, because transpiration cooling would be improved, especially during the summer; but the lost water must be complemented by adequate irrigation. The totality of the results confirm our hypothesis that sub-optimal RZT will cause a reduction in the bioactive components contents, adversely affect PS II and hinder uptake/partitioning of mineral elements in T. cucumerina.  相似文献   
1000.
This study addresses the physiological response of four tomato genotypes with distinct sensitivity to high NaCl concentrations, with the aim of identifying physiological traits to rank the genotypes’ sensitivity to salt stress. The central hypothesis was that tomato genotypes grown in saline environments show a characteristic salinity-triggered absorption and translocation of ions, leading to a distinct distribution pattern of Na, K, and soluble sugars. Experiments were conducted on two commercial cultivars: one assumed to be sensitive (Solanum lycopersicum L. F1 hybrid Harzfeuer) and one known to be tolerant (S. lycopersicum L. var. edkawi) to high salt concentrations. Furthermore, two wild salt-tolerant relatives (S. pennellii and S. lycopersicum var. cerasiforme) were selected. Based on our results regarding vegetative performance and partitioning of Na, K, glucose, fructose, and sucrose, it is possible to classify the genotype S. lycopersicum F1 hybrid Harzfeuer as moderately sensitive to salt stress and the genotypes S. lycopersicum var. edkawi, S. lycopersicum var. cerasiforme, and S. pennellii as moderately resistant to 210 mM NaCl. Calculations of the percentage of modification revealed non-specific genotype responses for the amount of sodium in roots and leaves, as well as the sucrose concentration and the osmotic potential of leaves. As shown, the salt-induced changes in potassium levels in leaves, and glucose concentration in roots might be used as additional traits to discriminate genotypes regarding their salt-sensitivity. These parameters might be useful when comparisons of fruit production or vegetative performance provide no conclusive indication e.g. due to the distinct growth habits of commercial cultivars selected for fruit productivity and native genotypes having a stronger vegetative development. However, additional studies should be conducted to evaluate a large number of genotypes differing in their NaCl tolerance. Furthermore, plant responses considering the dynamic source-sink relations due to fruit load needs to be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号