首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4669篇
  免费   355篇
  国内免费   1篇
  2021年   74篇
  2020年   47篇
  2019年   70篇
  2018年   81篇
  2017年   70篇
  2016年   114篇
  2015年   152篇
  2014年   187篇
  2013年   229篇
  2012年   315篇
  2011年   301篇
  2010年   191篇
  2009年   163篇
  2008年   241篇
  2007年   228篇
  2006年   260篇
  2005年   257篇
  2004年   247篇
  2003年   229篇
  2002年   204篇
  2001年   55篇
  2000年   36篇
  1999年   54篇
  1998年   70篇
  1997年   35篇
  1996年   44篇
  1995年   52篇
  1994年   49篇
  1993年   49篇
  1992年   37篇
  1991年   33篇
  1990年   29篇
  1989年   32篇
  1988年   25篇
  1987年   24篇
  1986年   24篇
  1985年   28篇
  1984年   42篇
  1983年   19篇
  1982年   39篇
  1981年   37篇
  1980年   43篇
  1979年   23篇
  1978年   25篇
  1977年   24篇
  1976年   22篇
  1975年   27篇
  1974年   22篇
  1973年   29篇
  1937年   13篇
排序方式: 共有5025条查询结果,搜索用时 687 毫秒
171.
Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.  相似文献   
172.
This is the first published report examining the combined effect of diet and genotype on body iron content using a classical twin study design. The aim of this study was to determine the relative contribution of genetic and environmental factors in determining iron status. The population was comprised of 200 BMI- and age-matched pairs of MZ and DZ healthy twins, characterised for habitual diet and 15 iron-related candidate genetic markers. Variance components analysis demonstrated that the heritability of serum ferritin (SF) and soluble transferrin receptor was 44% and 54% respectively. Measured single nucleotide polymorphisms explained 5% and selected dietary factors 6% of the variance in iron status; there was a negative association between calcium intake and body iron (p = 0.02) and SF (p = 0.04).  相似文献   
173.
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.  相似文献   
174.
Primary cilia are ubiquitous cellular antennae whose dysfunction collectively causes various disorders, including vision and hearing impairment, as well as renal, skeletal, and central nervous system anomalies. One ciliopathy, Alström syndrome, is closely related to Bardet–Biedl syndrome (BBS), sharing amongst other phenotypic features morbid obesity. As the cellular and molecular links between weight regulation and cilia are poorly understood, we used the obese mouse strain foz/foz, bearing a truncating mutation in the Alström syndrome protein (Alms1), to help elucidate why it develops hyperphagia, leading to early onset obesity and metabolic anomalies. Our in vivo studies reveal that Alms1 localizes at the base of cilia in hypothalamic neurons, which are implicated in the control of satiety. Alms1 is lost from this location in foz/foz mice, coinciding with a strong postnatal reduction (~70%) in neurons displaying cilia marked with adenylyl cyclase 3 (AC3), a signaling protein implicated in obesity. Notably, the reduction in AC3‐bearing cilia parallels the decrease in cilia containing two appetite‐regulating proteins, Mchr1 and Sstr3, as well as another established Arl13b ciliary marker, consistent with progressive loss of cilia during development. Together, our results suggest that Alms1 maintains the function of neuronal cilia implicated in weight regulation by influencing the maintenance and/or stability of the organelle. Given that Mchr1 and Sstr3 localization to remaining cilia is maintained in foz/foz animals but known to be lost from BBS knockout mice, our findings suggest different molecular etiologies for the satiety defects associated with the Alström syndrome and BBS ciliopathies. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   
175.
176.
Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide bonded member of insulin/relaxin superfamily of peptides that includes insulin, insulin-like growth factor I and II (IGFI and IGFII), insulin-like peptide 3, 4, 5 and 6 (INSL3, 4, 5 and 6), relaxin-1 (H1 relaxin), -2 (H2 relaxin) and -3 (H3 relaxin). Although it is expressed in relatively high levels in the gut, its biological function remains unclear. However, recent reports suggest a significant orexigenic action and a role in the regulation of insulin secretion and β-cell homeostasis, which implies that both agonists and antagonists of the peptide may have significant therapeutic applications. Modern solid phase synthesis techniques together with regioselective disulfide bond formation were employed for a preliminary structure–function relationship study of mouse INSL5. Two point mutated analogues, mouse INSL5 A-B(R24A, W25A) and mouse INSL5 A-B(K6A, R14A, Y18A) were chemically prepared, where the residues in the B-chain that may be involved in receptor activation and affinity binding, were respectively mutated. Synthetic mouse INSL5 A-B(R24A, W25A) analogue was inactive on RXFP4, the native receptor for INSL5, suggesting ArgB24 and TrpB25 are probably directly involved in INSL5 receptor activation. Mouse INSL5 A-B(K6A, R14A, Y18A) analogue had both decreased affinity and potency on RXFP4 (pIC50 7.7 ± 0.2, pEC50 7.87 ± 0.18) which indicated that one or more of these residues are critical for the binding to the receptor.  相似文献   
177.
The functions of P2X purinoceptors (P2X1-7) in the nervous system of adults have been widely studied. However, little is known about their roles during embryonic development. Our previous work has reported an extensive expression of P2X5 receptors in the adult mouse central nervous system. In the present study, we have examined the expression pattern of P2X5 receptor mRNA and protein during prenatal development of the mouse nervous system (from embryonic day E8 to E17). P2X5 receptors appeared in the neural tube as early as E8 and were gradually confined to new-born neurons in the cortical plate and ventral horn of the spinal cord. Heavy signals for P2X5 receptors were also found in dorsal root ganglia (DRG), retina, olfactory epithelium, and nerve fibers in skeletal muscles. In conclusion, P2X5 receptors were strongly represented in the developing mouse nervous system. The transient high expression pattern of P2X5 receptors in epithelium-like structures suggests a role during early neurogenesis.  相似文献   
178.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   
179.
Wound healing is a complex biological process involving the interaction of many cell types to replace lost or damaged tissue. Although the biology of wound healing has been extensively investigated, few studies have focused on the role of mast cells. In this study, we investigated the possible role of mast cells in wound healing by analyzing aspects of cutaneous excisional wound healing in three types of genetically mast cell-deficient mice. We found that C57BL/6-KitW-sh/W-sh, WBB6F1-KitW/W-v, and Cpa3-Cre; Mcl-1fl/fl mice re-epithelialized splinted excisional skin wounds at rates very similar to those in the corresponding wild type or control mice. Furthermore, at the time of closure, scars were similar in the genetically mast cell-deficient mice and the corresponding wild type or control mice in both quantity of collagen deposition and maturity of collagen fibers, as evaluated by Masson’s Trichrome and Picro-Sirius red staining. These data indicate that mast cells do not play a significant non-redundant role in these features of the healing of splinted full thickness excisional cutaneous wounds in mice.  相似文献   
180.
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the β-hydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号