首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   31篇
  国内免费   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   26篇
  2014年   37篇
  2013年   37篇
  2012年   43篇
  2011年   44篇
  2010年   29篇
  2009年   25篇
  2008年   26篇
  2007年   34篇
  2006年   33篇
  2005年   25篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有520条查询结果,搜索用时 109 毫秒
511.
Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self‐recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self‐assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor‐joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway‐Landvikvannet than in Norway‐Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human‐driven evolution can happen.  相似文献   
512.
513.
Summary Recent scanning electron microscopic studies confirm the presence of solitary cilia on most epithelial cells along the mammalian nephron and collecting ducts.By transmission electron microscopy we have found that the axonemata of such cilia consist of a maximal number of 9 doublet and no singlet filaments. 10% of the cross-sectioned cilia contain 9 doublets arranged in a peripheral ring (9+0 pattern). 30 % of the cross-sections contain 8 or 7 doublets in peripheral ring and 1 or 2 doublets in the central region (8+1 and 7+2 patterns). Serial sections and goniometer tilt reveal the central doublets to originate as dislodged peripheral doublets. 60% of the sectioned cilia contain filament numbers between 8 and 4. In patterns of 5 and 4 filaments single microtubules predominate.The functional significance of these atypical cilia is discussed.We are indebted to Prof. B. Afzelius and Prof. Th. Brun for valuable information and discussions during this work. The technical assistance of Miss K. Weltzin, Mr. E. Erichsen, Mr. R. Jensen and Mr. J. Røli is greatly appreciated  相似文献   
514.
Abstract. We studied revegetation patterns after experimental fine-scale disturbance (e.g. uprooting) in an old-growth Picea abies forest in southeastern Norway. An experimental severity gradient was established by manipulation of the depth of soil disturbance; two types of disturbed areas were used. Species recovery was recorded in the disturbed patches in three successive years after disturbance. The cover of vascular plants and, even more so the cover of bryophytes and lichens, recovered slowly after disturbance. The least severe treatments (removal of vegetation and removal of vegetation and the litter layer) was followed by the fastest recovery. The mean number of vascular plant species was usually higher three years after disturbance than before disturbance, while the opposite was true for bryophytes. Several vascular plant species that were abundant in intact forest floor vegetation (Vaccinium myrtillus, V. vitis-idaea and Deschampsia flexuosa) recovered during a three-year period primarily by resprouting from intact rhizomes and clonal in-growth. Other important recovery mechanisms included germination from a soil-buried propagule bank (e.g. Luzula pilosa, Plagiothecium laetum agg., Pohlia nutans and Polytrichum spp.) and dispersal of propagules into the disturbed patches (e.g. Betula pubescens and Picea abies). Microsite limitation seemed to occur in several species that were abundant in the soil propagule bank (e.g. the ferns Athyrium filix-femina, Gymnocarpium dryopteris and Phegopteris connectilis) but which did not appear in disturbed patches. Disturbance severity influenced revegetation patterns, recorded both as trajectories of vegetation composition in a DCA ordination space and as change in floristic dissimilarity. The length of the successional path (compositional change measured in β-diversity units) increased with increasing disturbance severity, and was also influenced by the area of the disturbed patch and the distance to intact vegetation. The rate of succession depended on the method by which it was measured; decreasing year by year in floristic space, while first decreasing and then increasing in ordination space. The reason for this difference is explained.  相似文献   
515.
516.
517.
518.
519.
520.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号