首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   110篇
  国内免费   2篇
  2021年   13篇
  2020年   17篇
  2019年   15篇
  2018年   19篇
  2017年   18篇
  2016年   15篇
  2015年   39篇
  2014年   32篇
  2013年   52篇
  2012年   51篇
  2011年   59篇
  2010年   37篇
  2009年   28篇
  2008年   52篇
  2007年   55篇
  2006年   40篇
  2005年   36篇
  2004年   53篇
  2003年   48篇
  2002年   33篇
  2001年   39篇
  2000年   29篇
  1999年   39篇
  1998年   12篇
  1997年   16篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   10篇
  1992年   20篇
  1991年   17篇
  1990年   17篇
  1989年   19篇
  1988年   17篇
  1987年   14篇
  1986年   12篇
  1985年   11篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   4篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   7篇
  1973年   7篇
  1971年   6篇
  1970年   4篇
排序方式: 共有1135条查询结果,搜索用时 31 毫秒
41.
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.  相似文献   
42.

Background

Thyroid hormone receptors TRα1, TRβ1 and TRβ2 are broadly expressed and exert a pleiotropic influence on many developmental and homeostatic processes. Extensive genetic studies in mice precisely defined their respective function.

Scope of review

The purpose of the review is to discuss two puzzling issues:
The isoform specificity problem: the different functions of TRα1, TRβ1 and TRβ2 might reflect either their different distribution in tissues or differences in the receptor intrinsic properties.
The cell-specificity problem: one would expect that different cell types share a common repertoire of TR target genes, but current knowledge does not support this assumption. How TR function is affected by the cellular context is an unsolved question.

Major conclusions

Mouse genetics support a balanced contribution of expression pattern and receptor intrinsic properties in defining the receptor respective functions. The molecular mechanisms sustaining cell specific response remain hypothetical and based on studies performed with other nuclear receptors.

General significance

The isoform-specificity and cell-specificity questions have many implications for clinical research, drug development, and endocrine disruptor studies. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   
43.
The aim of this study was to analyze the cleaning efficiency of polysaccharidases and proteolytic enzymes against biofilms of bacterial species found in food industry processing lines and to study enzyme effects on the composition of extracellular polymeric substances (EPS) and biofilm removal in a Clean-in-Place (CIP) procedure. The screening of 7 proteases and polysaccharidases for removal of biofilms of 16 bacterial species was first evaluated using a microtiter plate assay. The alkaline pH buffer removed more biofilm biomass as well as affecting a larger range of bacterial species. The two serine proteases and α-amylase were the most efficient enzymes. Proteolytic enzymes promoted biofilm removal of a larger range of bacterial species than polysaccharidases. Using three isolates derived from two bacterial species widely found in food processing lines (Pseudomonas fluorescens and the Bacillus cereus group), biofilms were developed on stainless steel slides and enzymatic solutions were used to remove the biofilms using CIP procedure. Serine proteases were more efficient in removing cells of Bacillus biofilms than polysaccharidases. However, polysaccharidases were more efficient in removing P. fluorescens biofilms than serine proteases. Solubilization of enzymes with a buffer containing surfactants, and dispersing and chelating agents enhanced the efficiency of polysaccharidases and proteases respectively in removing biofilms of Bacillus and P. fluorescens. A combination of enzymes targeting several components of EPS, surfactants, dispersing and chelating agents would be an efficient alternative to chemical cleaning agents.  相似文献   
44.
Snow cover is a key environmental component for tundra wildlife that will be affected by climate change. Change to the snow cover may affect the population dynamics of high‐latitude small mammals, which are active throughout the winter and reproduce under the snow. We experimentally tested the hypotheses that a deeper snow cover would enhance the densities and winter reproductive rates of small mammals, but that predation by mustelids could be higher in areas of increased small mammal density. We enhanced snow cover by setting out snow fences at three sites in the Canadian Arctic (Bylot Island, Nunavut, and Herschel Island and Komakuk Beach, Yukon) over periods ranging from one to four years. Densities of winter nests were higher where snow depth was increased but spring lemming densities did not increase on the experimental areas. Lemmings probably moved from areas of deep snow, their preferred winter habitat, to summer habitat during snow melt once the advantages associated with deep snow were gone. Our treatment had no effect on signs of reproduction in winter nests, proportion of lactating females in spring, or the proportion of juveniles caught in spring, which suggests that deep snow did not enhance reproduction. Results on predation were inconsistent across sites as predation by weasels was higher on the experimental area at one site but lower at two others and was not higher in areas of winter nest aggregations. Although this experiment provided us with several new insights about the impact of snow cover on the population dynamics of tundra small mammals, it also illustrates the challenges and difficulties associated with large‐scale experiments aimed at manipulating a critical climatic factor.  相似文献   
45.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   
46.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   
47.
We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure–activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile. 31d-1, 31d-2, 31f showed good exposures in CD-1 mice. The mechanism of action was discovered to be a host target: the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). The identification of the pan-HRV active compound 31f combined with a structurally distinct literature compound T-00127-HEV1 allowed the assessment of target related tolerability of inhibiting this kinase for a short period of time in order to prevent HRV replication.  相似文献   
48.
Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes'' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.  相似文献   
49.
50.
Sex chromosomes of basal placental mammals   总被引:1,自引:1,他引:0  
Placental (eutherian) mammals are currently classified into four superordinal clades (Afrotheria, Xenarthra, Laurasiatheria and Supraprimates) of which one, the Afrotheria (a unique lineage of African origin), is generally considered to be basal. Therefore, Afrotheria provide a pivotal evolutionary link for studying fundamental differences between the sex chromosomes of human/mouse (both representatives of Supraprimates and the index species for studies of sex chromosomes) and those of the distantly related marsupials. In this study, we use female fibroblasts to investigate classical features of X chromosome inactivation including replication timing of the X chromosomes and Barr body formation. We also examine LINE-1 accumulation on the X chromosomes of representative afrotherians and look for evidence of a pseudoautosomal region (PAR). Our results demonstrate that asynchronous replication of the X chromosomes is common to Afrotheria, as with other mammals, and Barr body formation is observed across all Placentalia, suggesting that mechanisms controlling this evolved before their radiation. Finally, we provide evidence of a PAR (which marsupials lack) and demonstrate that LINE1 is accumulated on the afrotherian and xenarthran X, although this is probably not due to transposition events in a common ancestor, but rather ongoing selection to retain recently inserted LINE1 on the X.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号