首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20715篇
  免费   2001篇
  国内免费   22篇
  2023年   93篇
  2022年   99篇
  2021年   472篇
  2020年   265篇
  2019年   364篇
  2018年   404篇
  2017年   364篇
  2016年   622篇
  2015年   1053篇
  2014年   1136篇
  2013年   1224篇
  2012年   1731篇
  2011年   1642篇
  2010年   1010篇
  2009年   817篇
  2008年   1196篇
  2007年   1253篇
  2006年   1061篇
  2005年   1052篇
  2004年   1040篇
  2003年   949篇
  2002年   949篇
  2001年   172篇
  2000年   131篇
  1999年   164篇
  1998年   265篇
  1997年   165篇
  1996年   151篇
  1995年   143篇
  1994年   147篇
  1993年   143篇
  1992年   130篇
  1991年   121篇
  1990年   109篇
  1989年   115篇
  1988年   106篇
  1987年   98篇
  1986年   100篇
  1985年   116篇
  1984年   126篇
  1983年   118篇
  1982年   134篇
  1981年   144篇
  1980年   135篇
  1979年   88篇
  1978年   91篇
  1977年   71篇
  1976年   91篇
  1974年   85篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
61.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   
62.
Direct evidence is presented for the role of a cytochrome P-450 monooxygenase (called mixed-function oxidase, or polysubstrate mono-oxygenase, PSMO) in the metabolism of the sex pheromone (Z)-9-tricosene to its corresponding epoxide and ketone in the housefly. A secondary alcohol, most likely an intermediate in the conversion of the alkene to the ketone, was also tentatively identified. The results of in vivo and in vitro experiments showed that the PSMO inhibitors, piperonyl butoxide (PB) and carbon monoxide, markedly inhibited the formation of epoxide and ketone from (9,10-3H) (Z)-9-tricosene. An examination of the relative rates of (Z)-9-tricosene metabolism showed that males exhibited a higher rate of metabolism than females with the antennae of males showing the highest activity of any tissue/organ examined. The major product from all tissues/organs was the epoxide. Data from experiments with subcellular fractions showed that the microsomal fraction had the majority of enzyme activity, which was strongly inhibited by PB and CO and required NADPH and O2 for activity. A carbon monoxide difference spectrum with reduced cytochrome showed maximal absorbance at 450 nm and allowed quantification of the cytochrome P-450 in the microsomal fraction of 0.410-nmol cytochrome P-450 mg?1 protein. Interaction of (Z)-9-tricosene with the cytochrome P-450 resulted in a type I spectrum, indicating that the pheromone binds to a hydrophobic site adjacent to the heme moiety of the oxidized cytochrome P-450.  相似文献   
63.
Purified NAD-malic enzyme from Ascaris suum is rapidly inactivated by the arginine reagent, 2,3-butanedione, and this inactivation is facilitated by 30 mM borate. Determination of the inactivation rate as a function of butanedione concentration suggests a second-order process overall, which is first order in butanedione. A second-order rate constant of 0.6 M-1 s-1 at pH 9 is obtained for the butanedione reaction. The inactivation is reversed by removal of the excess reagent upon dialysis. The enzyme is protected against inactivation by saturating amounts of malate in the presence and absence of borate. The divalent metal Mg2+ affords protection in the presence of borate but has no effect in its absence. The nucleotide reactant NAD+ has no effect on the inactivation rate in either the presence or absence of borate. A dissociation constant of 24 mM is obtained for E:malate from the decrease in the inactivation rate as a function of malate concentration. An apparent Ki of 0.5 mM is obtained for oxalate (an inhibitor competitive vs malate) from E:Mg:oxalate while no significant binding is observed for oxalate using the butanedione modified enzyme. The pH dependence of the first-order rate of inactivation by butanedione gives a pKa of 9.4 +/- 0.1 for the residue(s) modified, and this pK is increased when NAD is bound. The arginine(s) modified is implicated in the binding of malate.  相似文献   
64.
We present evidence that ethanol alters intracellular poly(adenosine diphosphoribose) metabolism and we further describe the mechanism by which ethanol exerts its effect on polymer synthesis. One percent ethanol stimulates polymer accumulation as much as 2.5-fold but does not alter polymer degradation in intact cells following DNA damage. Ethanol directly stimulates polymer synthesis following low doses of DNA damage induce by deoxyribonuclease I in a nucleotide-permeable cell system that does not possess a functional polymer turnover system. Ethanol has no measurable effect on polymer synthesis in undamaged nucleotide-permeable cells or in permeable cells treated with high doses of deoxyribonuclease I. Ethanol concentrations that stimulate poly(adenosine diphosphoribose) polymerase activity in vitro specifically lower KDNA without affecting KNAD or Vmax. The results clearly show that ethanol alters the binding of this enzyme to the DNA component of chromatin and that this altered binding is responsible for the activation of the enzyme. Altered affinity of poly(adenosine diphosphoribose) polymerase and perhaps other regulatory proteins for chromatin may play an important role in the pathology of alcohol.  相似文献   
65.
Abstract This paper describes the plasmid profiles obtained for 73 of 96 field isolates of Haemophilus pleuropneumoniae serotypes 1, 3, 5, and 7. We also characterized the antibiotic susceptibilities of these 96 isolates. Because of the high proportion of isolates resistant to some of the antibiotics, no conclusions can be drawn as to the role of plasmids in antibiotic resistance.  相似文献   
66.
Simian acquired immune deficiency syndrome (SAIDS) caused by the type D retrovirus SRV-1 results in opportunistic infections and a spectrum of oral lesions similar to those seen in humans with AIDS. To better understand the pathogenesis of these oral lesions we have retrospectively examined the oral mucosa from ten rhesus monkeys that died with SAIDS and prospectively examined the oral mucosa of ten additional animals inoculated with SRV-1 to determine at what time, and in what cells SRV-1 infection of the oral mucosa occurs. Using single and double label immunohistologic techniques, and electron microscopy we detected SRV-1 in clusters of oral epithelial cells and rare Langerhans cells as early as 1 month postinoculation.  相似文献   
67.
1. Aim. The biochemical characteristics of atrial natriuretic peptide receptors (ANP-R) derived from rat vascular smooth muscle (A-10 cell line) and central nervous system (CNS; olfactory bulb) tissue were compared. 2. Method and Results. ANP-Rs from each source were solubilized with 40 to 65% efficiency utilizing the nonionic detergent Lubrol-PX. Upon solubilization, the ANP-R from each source maintained the ability to bind 125I-ANP (99-126) with a high affinity; Scatchard analysis indicated that the VSMC ANP-R displayed a Kd for the radioligand of approximately 10 pM, whereas the olfactory receptor possessed a Kd of about 165 pM. The Bmax values for the soluble VSMC and olfactory ANP-Rs were 285 and 30 fmol/mg protein, respectively. Competition binding studies indicated that the VSMC ANP-R bound ANP(99-126), ANP(103-126), and ANP(103-123) with similar affinities, whereas the olfactory ANP-R was much more sensitive to changes in the COOH-terminal structure of the competing peptide. The soluble ANP-Rs from VSMC and olfactory were chromatographically indistinguishable on phenyl-, DEAE-, and wheat germ agglutinin-agarose columns. However, the ANP-Rs could be distinguished using GTP-agarose; the olfactory ANP-R was capable of binding to the resin, whereas the VSMC ANP-R was not. 3. Conclusions. Coupled with other studies, these data suggest that the A10 VSMC ANP-R observed in this study may not be coupled to guanylate cyclase and may represent a receptor serving a clearance function, whereas a significant proportion of the olfactory CNS ANP-R appears to be associated with GTP-binding proteins, likely particulate guanylate cyclase, and probably represents a coupled form of the receptor.  相似文献   
68.
Transformation ofAspergillus flavus to study aflatoxin biosynthesis   总被引:5,自引:0,他引:5  
Aflatoxin contamination of agricultural commodities continues to be a serious problem in the United States. Breeding for resistant genotypes has been unsuccessful and detoxification of food sources is not economically feasible. New strategies for control may become apparent once more is known about the biosynthesis and regulation of aflatoxin. Although the biosynthetic pathway of aflatoxin has been extensively studied, little is known about the regulation of the individual steps in the pathway. We have developed a genetic transformation system forAspergillus flavus that provides a new and expedient approach to studying the biosynthesis of aflatoxin and its regulation. Through the use of this genetic transformation system, genes for aflatoxin biosynthesis can be identified and isolated by the complementation of aflatoxin negative mutants. In this paper we discuss molecular strategies for studying the regulation and biosynthesis of aflatoxin.  相似文献   
69.
70.
The autoradiographic deoxyglucose method was employed to investigate: 1) whether the increased glucose utilization in the subfornical organ (SFO) during administration of angiotensin II (AII) depends on the neural inputs to the SFO; and 2) to investigate whether the activation of the hypothalamo-neurohypophysial system during administration of AII depends on inputs from the SFO. The ventral stalk of the SFO, which contains the majority of efferent and afferent projections of this circumventricular structure, was interrupted with knife cuts three days before the deoxyglucose experiments. Intravenous infusion of AII (2.5 micrograms/min) for 45 min increased glucose utilization in the SFO and neural lobe in the lesioned animals to the same extent as in the sham-operated animals. Drinking, however, was significantly reduced in lesioned animals. These experiments disclose independent parallel mechanisms responsible for activation of the SFO and the hypothalamo-neurohypophysial system by AII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号