首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   5篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   11篇
  2006年   8篇
  2005年   10篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
71.
Summary The extraction behavior of native and heated-denatured -chymotrypsin has been investigated with two different reversed micellar systems. A large difference in the degree of extraction was observed for the native relative to the denatured -chymotrypsin. In particular, mixed reversed micelles formulated with DOLPA (dioleyl phosphoric acid) and AOT show a high selectivity for the active -chymotrypsin.  相似文献   
72.
Summary Surfactant-coated lipases have been utilized as a biocatalyst for the resolution of racemic ibuprofen. S-(+)-ibuprofen was selectively transferred to the ester form by Mucor javanicus or Candida rugosa lipase. The enzymatic activity of upases in organic media was remarkably enhanced by coating with a nonionic surfactant. The reaction rates of the coated lipases were increased around 100-fold that of the powder lipases.  相似文献   
73.
Post-translational modifications of proteins control many biological processes through the activation, inactivation, or gain-of-function of the proteins. Recent developments in mass spectrometry have enabled detailed structural analyses of covalent modifications of proteins and also have shed light on the post-translational modification of superoxide dismutase. In this review, we introduce some covalent modifications of superoxide dismutase, nitration, phosphorylation, glutathionylaion, and glycation. Nitration has been the most extensively analyzed modification both in vitro and in vivo. Reaction of human Cu,Zn superoxide dismutase (SOD) with reactive nitrogen species resulted in nitration of a single tryptophan residue to 6-nitrotryptophan, which could be a new biomarker of a formation of reactive nitrogen species. On the other hand, tyrosine 34 of human MnSOD was exclusively nitrated to 3-nitrotyrosine and almost completely inactivated by the reaction with peroxynitrite. The nitrated MnSOD has been found in many diseases caused by ischemia/reperfusion, inflammation, and others and may have a pivotal role in the pathology of the diseases. Most of the post-translational modifications have given rise to a reduced activity of SOD. Since phosphorylation and nitration of SOD have been shown to have a possible reversible process, these modifications may be related to a redox signaling process in cells. Finally we briefly introduce a metal insertion system of SOD, focusing particularly on the iron misincorporation of nSOD, as a part of post-translational modifications.  相似文献   
74.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   
75.
Neutrophils are highly motile leukocytes, and they play important roles in the innate immune response to invading pathogens. Neutrophil chemotaxis requires Rac activation, yet the Rac activators functioning downstream of chemoattractant receptors remain to be determined. We show that DOCK2, which is a mammalian homologue of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, regulates motility and polarity during neutrophil chemotaxis. Although DOCK2-deficient neutrophils moved toward the chemoattractant source, they exhibited abnormal migratory behavior with a marked reduction in translocation speed. In DOCK2-deficient neutrophils, chemoattractant-induced activation of both Rac1 and Rac2 were severely impaired, resulting in the loss of polarized accumulation of F-actin and phosphatidylinositol 3,4,5-triphosphate (PIP3) at the leading edge. On the other hand, we found that DOCK2 associates with PIP3 and translocates to the leading edge of chemotaxing neutrophils in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. These results indicate that during neutrophil chemotaxis DOCK2 regulates leading edge formation through PIP3-dependent membrane translocation and Rac activation.  相似文献   
76.
Responses induced by Cd exposure were assessed in tobacco seedlings (Nicotiana tabacum L.) using macro and molecular indices. The 100 μM of Cd exposure reduced the total dry weight and chlorophyll index of the seedlings as much as the genuine Fe-deficiency. Concentration of Fe in the shoots decreased, whereas that in the roots increased by the Cd exposure, especially in the apoplasmic space. It is probable that Cd interferes mainly with the step of Fe-translocation from the roots to shoots and this sets the upper-part of the plant in a state of Fe-deficiency. The Cd exposure coordinately increased the expressions of the exogenous and the endogenous Fe-deficiency responsive genes, HvIDS2 pro ::GUS, NtFRO1 and NtIRT1 in the roots. This is the first data to demonstrate the responses of Cd-inducible Fe-deficiency at a molecular level.  相似文献   
77.
Common marmoset monkeys have recently attracted much attention as a primate research model, and are preferred to rhesus and cynomolgus monkeys due to their small bodies, easy handling and efficient breeding. We recently reported the establishment of common marmoset embryonic stem cell (CMESC) lines that could differentiate into three germ layers. Here, we report that our CMESC can also differentiate into cardiomyocytes and investigated their characteristics. After induction, FOG-2 was expressed, followed by GATA4 and Tbx20, then Nkx2.5 and Tbx5. Spontaneous beating could be detected at days 12-15. Immunofluorescent staining and ultrastructural analyses revealed that they possessed characteristics typical of functional cardiomyocytes. They showed sinus node-like action potentials, and the beating rate was augmented by isoproterenol stimulation. The BrdU incorporation assay revealed that CMESC-derived cardiomyocytes retained a high proliferative potential for up to 24 weeks. We believe that CMESC-derived cardiomyocytes will advance preclinical studies in cardiovascular regenerative medicine.  相似文献   
78.
STAT5 molecules are key components of the IL-2 signaling pathway, the deficiency of which often results in autoimmune pathology due to a reduced number of CD4(+)CD25(+) naturally occurring regulatory T (Treg) cells. One of the consequences of the IL-2-STAT5 signaling axis is up-regulation of FOXP3, a master control gene for naturally occurring Treg cells. However, the roles of STAT5 in other Treg subsets have not yet been elucidated. We recently demonstrated that IL-2 enhanced IL-10 production through STAT5 activation. This occurred in two types of human Treg cells: a novel type of umbilical cord blood-derived Treg cell, termed HOZOT, and Tr1-like Treg cells, IL-10-Treg. In this study, we examined the regulatory mechanisms of IL-10 production in these Treg cells, focusing specifically on the roles of STAT5. By performing bioinformatic analysis on the IL-10 locus, we identified one STAT-responsive element within intron 4, designated I-SRE-4, as an interspecies-conserved sequence. We found that I-SRE-4 acted as an enhancer element, and clustered CpGs around the I-SRE-4 were hypomethylated in IL-10-producing Treg cells, but not in other T cells. A gel-shift analysis using a nuclear extract from IL-2-stimulated HOZOT confirmed that CpG DNA methylation around I-SRE-4 reduced STAT5 binding to the element. Chromatin immunoprecipitation analysis revealed the in situ binding of IL-2-activated STAT5 to I-SRE-4. Thus, we provide molecular evidence for the involvement of an IL-2-STAT5 signaling axis in the expression of IL-10 by human Treg cells, an axis that is regulated by the intronic enhancer, I-SRE-4, and epigenetic modification of this element.  相似文献   
79.
80.
Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号