首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   49篇
  国内免费   1篇
  2023年   3篇
  2021年   11篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   15篇
  2015年   19篇
  2014年   28篇
  2013年   35篇
  2012年   49篇
  2011年   50篇
  2010年   28篇
  2009年   30篇
  2008年   45篇
  2007年   28篇
  2006年   49篇
  2005年   63篇
  2004年   38篇
  2003年   33篇
  2002年   42篇
  2001年   43篇
  2000年   34篇
  1999年   33篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   18篇
  1991年   17篇
  1990年   13篇
  1989年   21篇
  1988年   13篇
  1987年   11篇
  1986年   12篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   9篇
  1980年   3篇
  1979年   3篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1965年   2篇
排序方式: 共有906条查询结果,搜索用时 31 毫秒
101.
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.  相似文献   
102.
Methyl mercaptan is derived from l-methionine by the action of l-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) and is a major component of oral malodor. This compound is highly toxic and is thought to play an important role in periodontal disease. We found that Treponema denticola, a member of the subgingival biofilm at periodontal disease sites, produced a large amount of methyl mercaptan even at low concentration of l-methionine. METase activity in a cell-free extract from T. denticola was detected by two-dimensional electrophoresis under non-denaturing conditions, and the protein spot that exhibited high METase activity was identified using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. The identified gene produced a METase with a K(m) value for l-methionine (0.55mM) that is much lower than those of METases previously identified in the other organisms. This result suggests that T. denticola is an important producer of methyl mercaptan in the subgingival biofilm.  相似文献   
103.
104.
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3).  相似文献   
105.
106.
We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.  相似文献   
107.
Dendritic cell (DC)-based cancer immunotherapy has been paid much attention as a new and cancer cell-specific therapeutic in the last decade; however, little clinical outcome has been reported. Current limitations of DC-based cancer immunotherapy include sparse information about which DC phenotype should be administered. We here report a unique, representative, and powerful method to activate DCs, namely recombinant Sendai virus-modified DCs (SeV/DC), for cancer immunotherapy. In vitro treatment of SeV without any bioactive gene solely led DCs to a mature phenotype. Even though the expression of surface markers for DC activation ex vivo did not always reach the level attained by an optimized amount of LPS, superior antitumor effects to B16F1 melanoma, namely tumor elimination and survival, were obtained with use of SeV-GFP/DC as compared with those seen with LPS/DC in vivo, and the effect was enhanced by SeV/DC-expressing IFN-beta (SeV-murine IFN-beta (mIFN-beta)/DC). In case of the treatment of an established tumor of B16F10 (7-9 mm in diameter), a highly malignant subline of B16 melanoma, SeV-modified DCs (both SeV-GFP/DC and SeV-mIFN-beta/DC), but not immature DC and LPS/DC, dramatically improved the survival of animals. Furthermore, SeV-mIFN-beta/DC but not other DCs could lead B16F10 tumor to the dormancy, associated with strongly enhanced CD8+ CTL responses. These results indicate that rSeV is a new and powerful tool as an immune booster for DC-based cancer immunotherapy that can be significantly modified by IFN-beta, and SeV/DC, therefore, warrants further investigation as a promising alternative for cancer immunotherapy.  相似文献   
108.
The 5′-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5′ stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses α-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the α-amylase mRNA was proved by measuring α-amylase activity in the culture supernatant and the relative expression of α-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving α-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria.  相似文献   
109.
Revealing the control mechanisms responsible for the cell's surprisingly well-organized functions should lead directly to a better understanding of how the cell adapts to extraordinarily changing environments. A general framework for describing models that can represent diverse biochemical regulatory functions systematically would help not only systematic interpretation of the various models proposed for certain systems but also further understanding of the general control mechanism and design principles underlying different biological systems. This article presents a unified mathematical framework for describing gene regulatory units. The proposed framework is fairly compatible with the classical control theoretical framework, so it should serve as a connecting bridge between engineering control theory and biological control mechanisms. It should also provide a unified view of different regulatory units and facilitate systematic comparison of different mathematical models proposed in a variety of literature.  相似文献   
110.
It is worth investigating heterotypic cell-cell interactions by mimicking their in vivo structures and environment. In the present study, physiological cellular response and behavior of hepatocytes and endothelial cells were investigated by controlling their contact periphery in a new co-culture system. Rat primary hepatocytes and bovine endothelial cells were co-cultured on a dually patterned surface. Hepatic physiological functions such as albumin secretion and ammonium metabolism were enhanced by increasing heterotypic cell-cell interactions in a patterned co-culture. Furthermore, enhanced hepatic functions through heterotypic interactions are effective within a limited area apart from endothelial cells as evidenced by immunofluorescence staining of hepatic intracellular albumin, indicating that heterotypic interactions act in a paracrine manner. Thus, heterotypic cell communications that play indispensable roles in increasing hepatic physiological functions should be obtained with an increasing periphery of two-cell domains. These findings are important for the reconstruction of complex tissues such as liver and pancreas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号