首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880篇
  免费   67篇
  国内免费   3篇
  2023年   2篇
  2021年   10篇
  2020年   9篇
  2019年   5篇
  2018年   12篇
  2017年   5篇
  2016年   16篇
  2015年   26篇
  2014年   22篇
  2013年   60篇
  2012年   38篇
  2011年   52篇
  2010年   26篇
  2009年   30篇
  2008年   40篇
  2007年   37篇
  2006年   43篇
  2005年   43篇
  2004年   51篇
  2003年   46篇
  2002年   42篇
  2001年   26篇
  2000年   40篇
  1999年   35篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   24篇
  1991年   21篇
  1990年   20篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   10篇
  1981年   3篇
  1980年   2篇
  1979年   8篇
  1978年   6篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1969年   2篇
  1966年   1篇
排序方式: 共有950条查询结果,搜索用时 31 毫秒
881.
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.  相似文献   
882.
Abstract. The albumen gland is a female accessory sex gland that synthesizes and secretes perivitelline fluid around pulmonate eggs. The perivitelline fluid is composed of mainly galactogen and proteins, and is thought to provide nourishment to the embryos during development. We have previously identified the major secretory protein of the albumen gland of the freshwater snail Helisoma duryi as a native glycoprotein of ∼288 kDa, consisting of four 66-kDa subunits. In this study, the major albumen gland protein in H. duryi was purified, cloned, and the full-length cDNA sequence determined. Nucleotide sequence analysis revealed that the albumen gland protein (HdAGP) shared 83% identity with a partial cDNA sequence from a developmentally regulated albumen gland protein in Biomphalaria glabrata . The HdAGP mRNA was detected by RT-PCR in the albumen gland, ovotestis, mantle and digestive gland. SDS-PAGE analysis of the albumen gland protein in egg masses at different stages of development showed that the amount of HdAGP steadily decreased during embryogenesis, suggesting its possible catabolism by the developing embryos. Protein domain searches suggested that the HdAGP shared limited sequence identity, and adopted a similar three-dimensional conformation to the bactericidal, permeability increasing, protein family, raising the possibility of a potential bactericidal function for this important reproductive/developmental protein.  相似文献   
883.
Characterization of NADH kinase from Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
At least two enzymes that phosphorylate diphosphopyridine nucleotides were detected in Saccharomyces cerevisiae: NADH-specific kinase was localized exclusively in the mitochondria, and NAD+-specific kinase was distributed in the microsomal and cytosol fractions but not in the mitochondria. The identity of NAD+ kinase detected in the two fractions remains equivocal. NADH kinase was highly purified 1,041-fold from the mitochondrial fraction. The Km values for NADH and ATP were 105 microM and 2.1 mM, respectively. The relative molecular mass was estimated to be 160,000 by means of molecular sieve chromatography. From inactivation studies with SH inhibitors and protection by NADH, it was demonstrated that a cysteine residue is involved in the binding site of NADH.  相似文献   
884.
Two new compounds, batatasins IV and V were isolated from dormant bulbils of Chinese yam (Dioscorea batatas) and shown to be 2′,3-dihydroxy-5-methoxybibenzyl and 2′-hydroxy-3,4,5-trimethoxybibenzyl, respectively. An analogue, 3,4′-dihydroxy-5-methoxybibenzyl was synthesized. Inhibitory activities of these three compounds as well as batatasin I (6-hydroxy-2,4,7-trimethoxyphenanthrene) and batatasin III (3,3′-dihydroxy-5-methoxy-bibenzyl) in lettuce seed germination, lettuce hypocotyl elongation and wheat coleoptile section elongation tests are described.  相似文献   
885.
A flock of Japanese quail with generalized glycogenosis has been established. Affected quail showed difficulty in raising their wings. Excessive accumulation of glycogen was seen in the liver, heart, skeletal muscle and brain, apparently due to decreased acid maltase activity. The condition appeared between 2 and 12 weeks of age and tissue deposition of glycogen increased with age. The growth of affected quail was normal and there were no deaths from the condition. Although genetic analysis has not yet been completed, an autosomal recessive inheritance is suspected.  相似文献   
886.
887.
Summary Intrapulmonary injection, intrabronchial nebulization and intratracheal instillation ofAspergillus spores in rabbits can cause only a small amount of inflammation and the growth of hyphae is poor.But the combination of three methods,i.e artificial bronchostenosis, ligature of pulmonary artery andAspergillus spore injection into the distal bronchus, can cause bronchiectasis, cavity and cyst, and a massive laminated growth of hyphae is then found in the bronchial lumen. This is similar to the human aspergilloma.These experimental conditions seem to suggest the pathogenesis of human aspergilloma.  相似文献   
888.
DHRS4, a member of the short-chain dehydrogenase/reductase superfamily, reduces all-trans-retinal and xenobiotic carbonyl compounds. Human DHRS4 differs from other animal enzymes in kinetic constants for the substrates, particularly in its low reactivity to retinoids. We have found that pig, rabbit and dog DHRS4s reduce benzil and 3-ketosteroids into S-benzoin and 3α-hydroxysteroids, respectively, in contrast to the stereoselectivity of human DHRS4 which produces R-benzoin and 3β-hydroxysteroids. Among substrate-binding residues predicted from the crystal structure of pig DHRS4, F158 and L161 in the animal DHRS4 are serine and phenylalanine, respectively, in the human enzyme. Double mutation (F158S/L161F) of pig DHRS4 led to an effective switch of its substrate affinity and stereochemistry into those similar to human DHRS4. The roles of the two residues in determining the stereospecificity in 3-ketosteroid reduction were confirmed by reverse mutation (S158F/F161L) in the human enzyme. The stereochemical control was evaluated by comparison of the 3D models of pig wild-type and mutant DHRS4s with the modeled substrates. Additional mutation of T177N into the human S158F/F161L mutant resulted in almost complete kinetic conversion into a pig DHRS4-type form, suggesting a role of N177 in forming the substrate-binding cavity through an intersubunit interaction in pig and other animal DHRS4s, and explaining why the human enzyme shows low reactivity towards retinoids.  相似文献   
889.
Deficiency of 21-hydroxylase (21-OH), one of the most common genetic defects in humans, causes low glucocorticoid and mineralocorticoid production by the adrenal cortex, but the effect of this disorder on the adrenomedullary system is unknown. Therefore, we analyzed the development, structure, and function of the adrenal medulla in 21-OH-deficient mice, an animal model resembling human congenital adrenal hyperplasia. Chromaffin cells of 21-OH-deficient mice exhibited ultrastructural features of neuronal transdifferentiation with reduced granules, increased rough endoplasmic reticulum and small neurite outgrowth. Migration of chromaffin cells in the adrenal to form a central medulla was impaired. Expression of phenylethanolamine-N-methyltransferase (PNMT) was reduced to 27 +/- 9% (P<0.05), as determined by quantitative TaqMan polymerase chain reaction, and there was a significant reduction of cells staining positive for PNMT in the adrenal medulla of the 21-OH-deficient mice. Adrenal contents of epinephrine were decreased to 30 +/- 2% (P<0. 01) whereas norepinephrine and dopamine levels were reduced to 57 +/- 4% (P<0.01) and 50 +/- 9% (P<0.05), respectively. 21-OH-deficient mice demonstrate severe adrenomedullary dysfunction, with alterations in chromaffin cell migration, development, structure, and catecholamine synthesis. This hitherto unrecognized mechanism may contribute to the frequent clinical, mental, and therapeutic problems encountered in humans with this genetic disease.  相似文献   
890.
Two members of the CDK5 and ABL enzyme substrate (CABLES) family, CABLES1 and CABLES2, share a highly homologous C-terminus. They interact and associate with cyclin-dependent kinase 3 (CDK3), CDK5, and c-ABL. CABLES1 mediates tumor suppression, regulates cell proliferation, and prevents protein degradation. Although Cables2 is ubiquitously expressed in adult mouse tissues at RNA level, the role of CABLES2 in vivo remains unknown. Here, we generated bicistronic Cables2 knock-in reporter mice that expressed CABLES2 tagged with 3×FLAG and 2A-mediated fluorescent reporter tdTomato. Cables2-3×FLAG-2A-tdTomato (Cables2Tom) mice confirmed the expression of Cables2 in various mouse tissues. Interestingly, high intensity of tdTomato fluorescence was observed in the brain, testis and ovary, especially in the corpus luteum. Furthermore, immunoprecipitation analysis using the brain and testis in Cables2Tom/Tom revealed interaction of CABLES2 with CDK5. Collectively, our new Cables2 knock-in reporter model will enable the comprehensive analysis of in vivo CABLES2 function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号