首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   37篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   15篇
  2016年   10篇
  2015年   17篇
  2014年   26篇
  2013年   56篇
  2012年   44篇
  2011年   50篇
  2010年   16篇
  2009年   30篇
  2008年   47篇
  2007年   50篇
  2006年   40篇
  2005年   43篇
  2004年   40篇
  2003年   39篇
  2002年   35篇
  2001年   14篇
  2000年   17篇
  1999年   15篇
  1998年   13篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   11篇
  1991年   8篇
  1990年   6篇
  1989年   5篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1984年   4篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有753条查询结果,搜索用时 15 毫秒
31.
Small-angle X-ray scattering experiments were carried out to investigate the structural changes of cardiac thin filaments induced by the cardiomyopathy-causing E244D mutation in troponin T (TnT). We examined native thin filaments (NTF) from a bovine heart, reconstituted thin filaments containing human cardiac wild-type Tn (WTF), and filaments containing the E244D mutant of Tn (DTF), in the absence and presence of Ca2+. Analysis by model calculation showed that upon Ca2+-activation, tropomyosin (Tm) and Tn in the WTF and NTF moved together in a direction to expose myosin-binding sites on actin. On the other hand, Tm and Tn of the DTF moved in the opposite directions to each other upon Ca2+-activation. These movements caused Tm to expose more myosin-binding sites on actin than the WTF, suggesting that the affinity of myosin for actin is higher for the DTF. Thus, the mutation-induced structural changes in thin filaments would increase the number of myosin molecules bound to actin compared with the WTF, resulting in the force enhancement observed for the E244D mutation.  相似文献   
32.
Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene cause familial amyotrophic lateral sclerosis (ALS) through the gain of a toxic function; however, the nature of this toxic function remains largely unknown. Ubiquitylated aggregates of mutant SOD1 proteins in affected brain lesions are pathological hallmarks of the disease and are suggested to be involved in several proposed mechanisms of motor neuron death. Recent studies suggest that mutant SOD1 readily forms an incorrect disulfide bond upon mild oxidative stress in vitro, and the insoluble SOD1 aggregates in spinal cord of ALS model mice contain multimers cross-linked via intermolecular disulfide bonds. Here we show that a non-physiological intermolecular disulfide bond between cysteines at positions 6 and 111 of mutant SOD1 is important for high molecular weight aggregate formation, ubiquitylation, and neurotoxicity, all of which were dramatically reduced when the pertinent cysteines were replaced in mutant SOD1 expressed in Neuro-2a cells. Dorfin is a ubiquityl ligase that specifically binds familial ALS-linked mutant SOD1 and ubiquitylates it, thereby promoting its degradation. We found that Dorfin ubiquitylated mutant SOD1 by recognizing the Cys(6)- and Cys(111)-disulfide cross-linked form and targeted it for proteasomal degradation.  相似文献   
33.
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin''s peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.  相似文献   
34.
35.
36.
Bronchial asthma (BA) is a common chronic inflammatory disease characterized by hyperresponsive airways, excess mucus production, eosinophil activation, and the production of IgE. The complement system plays an immunoregulatory role at the interface of innate and acquired immunities. Recent studies have provided evidence that C3, C3a receptor, and C5 are linked to airway hyperresponsiveness. To determine whether genetic variations in the genes of the complement system affect susceptibility to BA, we screened single nucleotide polymorphisms (SNPs) in C3, C5, the C3a receptor gene (C3AR1), and the C5a receptor gene (C5R1) and performed association studies in the Japanese population. The results of this SNP case-control study suggested an association between 4896C/T in the C3 gene and atopic childhood BA (P=0.0078) as well as adult BA (P=0.010). When patient data were stratified according to elevated total IgE levels, 4896C/T was more closely associated with adult BA (P=0.0016). A patient-only association study suggested that severity of childhood BA was associated with 1526G/A of the C3AR1 gene (P=0.0057). We identified a high-risk haplotype of the C3 gene for childhood (P=0.0021) and adult BA (P=0.0058) and a low-risk haplotype for adult BA (P=0.00011). We also identified a haplotype of the C5 gene that was protective against childhood BA (P=1.4×10–6) and adult BA (P=0.00063). These results suggest that the C3 and C5 pathways of the complement system play important roles in the pathogenesis of BA and that polymorphisms of these genes affect susceptibility to BA.  相似文献   
37.
It remained very difficult to manipulate gene expression in chick embryos until the advent of in ovo electroporation which enabled the induction of both gain-of-function, and recently loss-of-function, of a gene of interest at a specific developmental stage. Gain-of-function by electroporation is so effective that it has become widely adopted in developmental studies in the chick. Recently, it became possible to induce loss-of-function by introducing an siRNA expression vector by electroporation. In this review, the methods of electroporation for gain-of-function and for loss-of-function by siRNA are discussed.  相似文献   
38.
Six1 controls patterning of the mouse otic vesicle   总被引:3,自引:0,他引:3  
Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1 was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos, expressions of Otx1, Otx2, Lfng and Fgf3, which were expressed ventrally in the wild-type otic vesicles, were abolished, while the expression domains of Dlx5, Hmx3, Dach1 and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1 functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1- and Shh-deficient mice, expressions of Six1 and Shh were mutually independent.  相似文献   
39.
The present study was carried out to investigate whether the hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 (GLP-1) in chicks. To examine this, Fos expression in the chick hypothalamus were immunohistochemically detected after intracerebroventricular (ICV) injection of 30-pmol GLP-1. ICV injection of GLP-1 stimulated the expression of Fos-like immunoreactive (FLI) cells in the ventromedial hypothalamic nucleus (VMN). When 15-pmol GLP-1 was directly injected into the chick VMN, the chick's food intake was significantly decreased compared with the control treatment. Microinjection of GLP-1 into the (LHA) also inhibited feeding in chicks, although ICV injection of GLP-1 did not stimulate FLI expression in the brain area. These results suggest that VMN and some brain regions are involved in the anorexic effect of GLP-1 in chicks.  相似文献   
40.
Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号