首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   38篇
  国内免费   3篇
  2021年   3篇
  2018年   5篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   12篇
  2012年   21篇
  2011年   18篇
  2010年   20篇
  2009年   24篇
  2008年   15篇
  2007年   28篇
  2006年   16篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   18篇
  2001年   14篇
  2000年   15篇
  1999年   12篇
  1998年   10篇
  1997年   9篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   10篇
  1990年   4篇
  1989年   7篇
  1988年   12篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   2篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有489条查询结果,搜索用时 31 毫秒
91.
Genetic transformation of maize cells by particle bombardment   总被引:11,自引:3,他引:8       下载免费PDF全文
Intact maize cells were bombarded with microprojectiles bearing plasmid DNA coding for selectable (neomycin phosphotransferase [NPT II]) and screenable (β-glucuronidase [GUS]) marker genes. Kanamycin-resistant calli were selected from bombarded cells, and these calli carried copies of the NPT II and GUS genes as determined by Southern blot analysis. All such calli expressed GUS although the level of expression varied greatly between transformed cell lines. These results show that intact cells of important monocot species can be stably transformed by microprojectiles.  相似文献   
92.
Summary Scanning electron micrographs of gill tissue from rainbow trout fixed with 50% glutaraldehyde revealed the presence of microridges on surfaces of epithelial cells of the secondary lamellae. These microridges vary in length from 1 to 7 , with a mean height of 0.75 . Calculations show that they increase the total lamellar epithelial surface area approximately 2.5 fold. Mucus secreting cells are present on the body of the filament and on secondary lamellae. Chloride cells are located primarily in the interlamellae filamental epithelium and on the basal area of lamellae. Extensions of the chloride cell epithelium are microvillous in nature and their height is only slightly greater than that of the microridges of typical lamellar epithelial cells. A reduction in number or complete absence of microvilli on chloride cells appeared to be related to degenerative changes in these cells observed in transmission electron micrographs. Non secretory interlamellae filamental epithelial cells have microridges of very attenuated lengths.This research was supported by EPA Grant R-801034, USPHS Training Grant HL-05873, the Mich. Agr. Exp. Sta., Proj. 122 (Journal Article No. 5801), and OWRR Grant A-064. Acknowledgements: The authors wish to express their gratitude to Mrs. J. Mack and Mr. Wm. McAffe for their technical assistance with the electron microscopes.  相似文献   
93.
B A Roth  S A Goff  T M Klein    M E Fromm 《The Plant cell》1991,3(3):317-325
Tissue-specific expression of the maize anthocyanin Bronze-1 (Bz1) gene is controlled by the products of several regulatory genes. These include C1 or Pl and R or B that share homology to the myb proto-oncogenes and myc-like genes, respectively. Bz1 expression in embryo tissues is dependent on C1 and an R-sc allele of R. Transient expression from mutated and deleted versions of the Bz1 promoter fused to a luciferase reporter gene was measured in C1, Rscm2 embryos after gene transfer by microprojectiles. This analysis revealed that the sequences between -76 base pairs (bp) and -45 bp and a 9-bp AT-rich block between -88 bp and -80 bp were critical for Bz1 expression. The -76 bp to -45 bp region includes two short sequences that are homologous to the consensus binding sites of the myb- and myc-like proteins. Site-specific mutations of these "myb" and "myc" sequences reduced Bz1 expression to 10% and 1% of normal, respectively. Additionally, a trimer of a 38-bp oligonucleotide containing these myb and myc sites increased the expression of a cauliflower mosaic virus 35S minimal promoter by 26-fold. This enhancement was dependent on both C1 and R. Because the sites critical for Bz1 expression are homologous to the myb and myc consensus binding sequences and the C1 and R proteins share homology with the myb and myc products, respectively, we propose that C1 and R interact with the Bz1 promoter at these sites.  相似文献   
94.
In an attempt to gain insight into the mechanism of the rat muscle adenylosuccinate synthetase reaction, experiments using the technique of positional isotope exchange (isotope scrambling) were undertaken. [gamma-18O]GTP was prepared and incubated with Mg2+ and the synthetase in the presence of various ligands. Positional isotope exchange occurred, as measured by nuclear magnetic resonance spectroscopy, when IMP was present. In the absence of IMP, with or without aspartate or succinate, the [gamma-18O]GTP did not exhibit scrambling. These results suggest that the adenylosuccinate synthetase reaction involves the participation of 6-phosphoryl-IMP as an obligatory intermediate. On the basis of experiments carried out in our laboratory as well as in others, we believe the GDP remains bound to the enzyme until the product, adenylosuccinate, is formed. All products may then dissociate randomly from the enzyme. The positional isotope exchange experiments, along with initial-rate experiments carried out in our laboratory, serve to explain the lack of partial exchange reactions associated with the synthetase (Fromm, H. J. (1958) Biochim. Biophys. Acta 29, 255-262), as well as the net inversion of configuration when chiral thio-GTP is converted to thiophosphate (Webb, M. R., Reed, G. H., Cooper, B. F., and Rudolph, F. B. (1984) J. Biol. Chem. 259, 3044-3046).  相似文献   
95.
Adenylosuccinate synthetase, encoded by the purA gene of Escherichia coli, catalyzes the first committed step toward AMP in the de novo purine biosynthetic pathway and plays an important role in the interconversion of purines. A 3.2-kb DNA fragment, which carries the purA gene, was cloned into the temperature-inducible, high-copy-number plasmid vector, pMOB45. Upon temperature induction, cells containing this plasmid produce adenylosuccinate synthetase at approximately 40 times the wild-type level. A scheme is presented for the purification of the overproduced adenylosuccinate synthetase to homogeneity in amounts sufficient for studies of its structure and mechanism. The wild-type and the overproduced adenylosuccinate synthetase enzyme preparations were judged to be identical by the following criteria. The amino acid sequence at the N-terminus of the overproduced enzyme proved identical to the corresponding sequence of the wild-type enzyme. Michaelis constants for both the wild-type and overproduced enzyme preparations were the same. And (iii) both proteins shared similar chromatographic behavior and the same mobility during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Results from size-exclusion chromatography and SDS-polyacrylamide gel electrophoresis suggest that adenylosuccinate synthetase exists as a dimer of identical, 48,000-Da, subunits.  相似文献   
96.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   
97.
The chloroplast gene for 16S rRNA was cloned from two maternally inherited streptomycin-resistant mutants ofNicotiana differing in degree of resistance at the whole plant and isolated chloroplast level. A single-nucleotide change in the 16S rRNA gene was detected for each mutant: a C to T transition at nucleotide 860 (Escherichia coli coordinate C912) which is an often mutated site, and a novel transition of C to T at nucleotide 472 (E. coli coordinate C525). The novel mutation is located in the phylogenetically conserved 530 loop.  相似文献   
98.
The effects of AMP, fructose 6-phosphate (Fru-6-P), fructose 2,6-bisphosphate (Fru-2,6-P2), and paramagnetic ions on the aromatic region of the proton nuclear magnetic resonance (NMR) spectrum of rabbit liver fructose-1,6-bisphosphatase have been investigated at 300 MHz. Two well resolved peaks in this region of the NMR spectrum are assigned to the protons from the aromatic ring of a tyrosyl residue of the enzyme by chemical modification with tetranitromethane and by nuclear Overhauser effects. Nitration of the tyrosyl residue causes desensitization of the enzyme to AMP inhibition as well as the loss of activity. In the presence of AMP during the modifications, 1 tyrosyl residue could be protected, presumably the one observed by NMR. Binding of AMP, an allosteric inhibitor of the enzyme, to rabbit liver fructose-1,6-bisphosphatase leads to an upfield shift of the tyrosyl proton signals in the NMR spectrum. No chemical shift or line broadening could be detected in the presence of the paramagnetic manganous ion, Fru-2,6-P2, or Fru-6-P. The negative intramolecular nuclear Overhauser effect from the ribose H2' proton to the adenine H8 proton of AMP suggested that AMP binds to the enzyme with an anti conformation about the glycosidic bond. The failure to observe intermolecular nuclear Overhauser effects between the tyrosyl residue and the protons of AMP indicates that the distances between them are greater than 4 A. On the basis of these observations, it is suggested that the AMP-related tyrosyl residue may be close to the AMP binding site, but it is not directly involved in ligand binding. Rather, the protection of this tyrosyl residue by AMP as observed by chemical modification experiments may well be due to a conformational change that results from covalent modification of the enzyme.  相似文献   
99.
100.
Brain hexokinase (HKI) is inhibited potently by its product glucose 6-phosphate (G6P); however, the mechanism of inhibition is unsettled. Two hypotheses have been proposed to account for product inhibition of HKI. In one, G6P binds to the active site (the C-terminal half of HKI) and competes directly with ATP, whereas in the alternative suggestion the inhibitor binds to an allosteric site (the N-terminal half of HKI), which indirectly displaces ATP from the active site. Single mutations within G6P binding pockets, as defined by crystal structures, at either the N- or C-terminal half of HKI have no significant effect on G6P inhibition. On the other hand, the corresponding mutations eliminate product inhibition in a truncated form of HKI, consisting only of the C-terminal half of the enzyme. Only through combined mutations at the active and allosteric sites, using residues for which single mutations had little effect, was product inhibition eliminated in HKI. Evidently, potent inhibition of HKI by G6P can occur from both active and allosteric binding sites. Furthermore, kinetic data reported here, in conjunction with published equilibrium binding data, are consistent with inhibitory sites of comparable affinity linked by a mechanism of negative cooperativity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号