首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   38篇
  国内免费   3篇
  2021年   3篇
  2018年   5篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   12篇
  2012年   21篇
  2011年   18篇
  2010年   20篇
  2009年   24篇
  2008年   15篇
  2007年   28篇
  2006年   16篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   18篇
  2001年   14篇
  2000年   15篇
  1999年   12篇
  1998年   10篇
  1997年   9篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   10篇
  1990年   4篇
  1989年   7篇
  1988年   12篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   2篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有488条查询结果,搜索用时 671 毫秒
51.
Reduced expression of the Indy (I'm Not Dead, Yet) gene in D.?melanogaster and its homolog in C.?elegans prolongs life span and in D.?melanogaster augments mitochondrial biogenesis in a manner akin to caloric restriction. However, the cellular mechanism by which Indy does this is unknown. Here, we report on the knockout mouse model of the mammalian Indy (mIndy) homolog, SLC13A5. Deletion of mIndy in mice (mINDY(-/-) mice) reduces hepatocellular ATP/ADP ratio, activates hepatic AMPK, induces PGC-1α, inhibits ACC-2, and reduces SREBP-1c levels. This signaling network promotes hepatic mitochondrial biogenesis, lipid oxidation, and energy expenditure and attenuates hepatic de novo lipogenesis. Together, these traits protect mINDY(-/-) mice from the adiposity and insulin resistance that evolve with high-fat feeding and aging. Our studies demonstrate a profound effect of mIndy on mammalian energy metabolism and suggest that mINDY might be a therapeutic target for the treatment of obesity and type 2 diabetes.  相似文献   
52.
Arend M  Stinzing A  Wind C  Langer K  Latz A  Ache P  Fromm J  Hedrich R 《Planta》2005,223(1):140-148
In previous studies, we have shown that annual expression profiles of cambial and wood tissue with respect to the Shaker K+ channel PTORK correlate with cambial activity. To follow PTORK-gene activity on the cellular level, we isolated the respective promoter regions and generated transgenic Arabidopsis plants expressing the GUS gene under the control of the PTORK promoter. Cross-sections of petioles showed PTORK-driven signals predominantly in the xylem parenchyma surrounding the vessels and in the phloem. Antibodies raised against a unique N-terminal region of PTORK in histo-immunochemical analyses recognised this K+-release channel in growth-active poplar plants only. PTORK labelling was found in differentiating xylem cells (young fibres) and mature xylem (vessel-associated cells of the ray parenchyma). Patch-clamp measurements on fibre cell protoplasts, derived from young poplar twigs, identified outward-rectifying K+ channels as the major K+ conductance of this cell type, which resembled the biophysical properties of PTORK when expressed in Xenopus oocytes.Electronic Supplementary Material Supplementary material is available for this article at Matthias Arend and Andrea Stinzing contributed equally to this work  相似文献   
53.
To gain an understanding of the role of electrical signaling in trees, poplar (Populus trichocarpa, Populus tremula x P. tremuloides) shoots were stimulated by chilling as well as flaming. Two kinds of signal propagation were detected by microelectrode measurements (aphid technique) in the phloem of leaf veins: (1) basipetal, short-distance signaling that led to rapid membrane hyperpolarization caused by K+-efflux within the leaf lamina; and (2) acropetal, long-distance signaling that triggered depolarization of the membrane potential in the leaf phloem. In the latter, the depolarizing signals travel across the stem from the manipulated leaves to adjacent leaves where the net CO2 uptake rate is temporarily depressed toward compensation. With regard to photosystem II, both heat-induced long-distance and short-distance signaling were investigated using two-dimensional "imaging" analysis of chlorophyll fluorescence. Both types of signaling significantly reduced the quantum yield of electron transport through photosystem II. Imaging analysis revealed that the signal that causes yield reduction spreads through the leaf lamina. Coldblocking of the stem proved that the electrical signal transmission via the phloem becomes disrupted, causing the leaf gas exchange to remain unaffected. Calcium-deficient trees showed a marked contrast inasmuch as the amplitude of the electrical signal was distinctly reduced, concomitant with the absence of a significant response in leaf gas exchange upon flame wounding. In summary, the above results led us to conclude that calcium as well as potassium is involved in the propagation of phloem-transmitted electrical signals that evoke specific responses in the photosynthesis of leaves.  相似文献   
54.
The study of radiobiological effects induced in vitro by low fluences of alpha particles would be significantly enhanced if the precise localization of each particle track in the cell monolayer was known. From this perspective, we developed a new method based on tailor-made UV-radiation-cured CR-39, the production of which is described. Its validation both as a petri dish and as solid-state nuclear track detectors is demonstrated. With respect to the demands on solid-state nuclear track detectors in such experiments, these biologically compatible detectors have a controlled micrometric thickness that allows them to be crossed by the alpha particles. In this study, we present a method for obtaining 10-mum-thick CR-39, its chemical characterization, and its properties as a solid-state nuclear track detector under the environmental conditions of radiobiological experiments. The experimental studies performed with 3.5 MeV alpha particles show that their transmitted energy is sufficient enough to cross the entire cellular volume. Under optimal conditions, etched tracks are clearly defined 2 h after etching. Moreover, the UV-radiation-cured CR-39 represents an essentially zero background that is due to the short time between the production and use of the polymer. Under a confocal microscope, this thin solid-state nuclear track detector allows the precise localization of the impact parameter at the subcellular level.  相似文献   
55.
Attraction of subterranean termites (Isoptera) to carbon dioxide   总被引:1,自引:0,他引:1  
Subterranean termites, Reticulitermes spp., were attracted to carbon dioxide (CO2) in laboratory and field tests. In behavioral bioassays, Reticulitermes flavipes (Kollar), Reticulitermes tibialis Banks, and Reticulitermes virginicus Banks were attracted to CO2 concentrations between 5 and 50 mmol/mol. In further bioassays, R. tibialis and R. virginicus were attracted to the headspace from polyisocyanurate construction foam that contained 10-12 mmol/mol CO2. In soil bioassays in the laboratory, more termites foraged in chambers containing CO2-generating formulations than in unbaited control chambers. In field tests, stations containing CO2-generating baits attracted R. tibialis away from wooden fence posts at rangeland sites in Colorado. For all of the CO2 formulations tested, termites foraged in significantly more bait stations at treatment fenceposts than in bait stations at the control fenceposts. By the end of the 8-wk study, the number of bait stations located by termites at treatment fenceposts ranged from 40 to 90%. At control fenceposts, termites foraged in only a single station and the one positive station was not located by termites until week 5 of the study. At treatment fenceposts, termites foraged equally in active stations (containing a CO2-generating bait) and passive stations (with no CO2-generating bait), indicating that bait stations may benefit passively from a proximal CO2 source in the soil. CO2 used as an attractant in current baiting systems could improve their effectiveness by allowing earlier exposure of termites to an insecticide.  相似文献   
56.
Fait A  Yellin A  Fromm H 《FEBS letters》2005,579(2):415-420
In plants, succinic semialdehyde dehydrogenase (SSADH)-deficiency results in the accumulation of reactive oxygen intermediates (ROI), necrotic lesions, dwarfism, and hypersensitivity to environmental stresses. We report that Arabidopsis ssadh knockout mutants contain five times the normal level of gamma-hydroxybutyrate (GHB), which in SSADH-deficient mammals accounts for phenotypic abnormalities. Moreover, the level of GHB in Arabidopsis is light dependent. Treatment with gamma-vinyl-gamma-aminobutyrate, a specific gamma-aminobutyrate (GABA)-transaminase inhibitor, prevents the accumulation of ROI and GHB in ssadh mutants, inhibits cell death, and improves growth. These results provide novel evidence for the relationship between the GABA shunt and ROI, which may, in part, explain the phenotype of SSADH-deficient plants and animals.  相似文献   
57.
58.
The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.  相似文献   
59.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号