首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   24篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   11篇
  2012年   15篇
  2011年   22篇
  2010年   13篇
  2009年   16篇
  2008年   21篇
  2007年   28篇
  2006年   23篇
  2005年   20篇
  2004年   12篇
  2003年   14篇
  2002年   17篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1973年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
331.
332.
333.
Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly “greedy” behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable.  相似文献   
334.
On the basis of the linear killer plasmid pGKL1 from Kluyveromyces lactis, two new linear hybrid plasmids were constructed. One of these, pRSC126, carried the xylA gene from Streptomyces rubiginosus encoding the xylose isomerase. The other linear hybrid molecule, pRSC128, carried the hasB gene of Streptococcus pyogenes encoding the UDP glucose dehydrogenase. Construction was performed in a way that the putative cytoplasmic promoter element of ORF5 of pGKL2 was fused to the coding region of the heterologous genes. After transformation, in vivo recombination led to the establishment of linear hybrid vectors. Though efficiency of expression was low when compared with bacterial systems, cytoplasmic expression of both genes was clearly demonstrated. Received: 1 April 1996 / Accepted: 30 May 1996  相似文献   
335.
Melanomas and other cancers of neuroectodermal origin express multiple cell-surface gangliosides in patterns that vary significantly even within the same tumor type. Monoclonal antibodies (mAb) against four of these gangliosides (GM2, GD2, 9-O-acetyl-GD3 and GD3) were tested alone and in combination on 14 tumor cell lines (7 melanomas, 3 neuroblastomas, 3 sarcomas and 1 astrocytoma) using flow cytometry and complement-dependent cytotoxicity (CDC) assays. Increased tumor cell recognition and CDC resulting from the combination of three or four mAb were found in 14/14 tested cell lines, and this was most striking when each mAb was used at suboptimal concentration. At these concentrations, the average mean fluorescence intensity of the 14 cell lines with individual mAb was between 3.0 and 6.8 and increased to 10.8 and 18.8 with the three- and four-mAb mixtures. The average percentage CDC-specific release with individual mAb was 2.0%–8.3%, and 12.3% and 16.6% with the three- and four-mAb combinations. The number of cell lines showing significant mean fluorescence intensity and CDC increased from 2–8/14 with single mAb to 13–14/14 with the mixtures of three or four mAb. Our experimental results support the rationale for active immunization with a polyvalent ganglioside vaccine or passive therapy with a combination of mAb to different gangliosides in patients with tumors of neuroectodermal origin. In addition, our studies have demonstrated that 9-O-acetyl-GD3 is a surprisingly effective target for immune attack, although it is a minor constituent of these cells.  相似文献   
336.
Axonal damage is an early step in traumatic and neurodegenerative disorders of the central nervous system (CNS). Damaged axons are not able to regenerate sufficiently in the adult mammalian CNS, leading to permanent neurological deficits. Recently, we showed that inhibition of the autophagic protein ULK1 promotes neuroprotection in different models of neurodegeneration. Moreover, we demonstrated previously that axonal protection improves regeneration of lesioned axons. However, whether axonal protection mediated by ULK1 inhibition could also improve axonal regeneration is unknown. Here, we used an adeno-associated viral (AAV) vector to express a dominant-negative form of ULK1 (AAV.ULK1.DN) and investigated its effects on axonal regeneration in the CNS. We show that AAV.ULK1.DN fosters axonal regeneration and enhances neurite outgrowth in vitro. In addition, AAV.ULK1.DN increases neuronal survival and enhances axonal regeneration after optic nerve lesion, and promotes long-term axonal protection after spinal cord injury (SCI) in vivo. Interestingly, AAV.ULK1.DN also increases serotonergic and dopaminergic axon sprouting after SCI. Mechanistically, AAV.ULK1.DN leads to increased ERK1 activation and reduced expression of RhoA and ROCK2. Our findings outline ULK1 as a key regulator of axonal degeneration and regeneration, and define ULK1 as a promising target to promote neuroprotection and regeneration in the CNS.Subject terms: Cell death in the nervous system, Neurodegeneration, Spinal cord injury  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号