首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   97篇
  国内免费   11篇
  2021年   5篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   19篇
  2014年   26篇
  2013年   13篇
  2012年   24篇
  2011年   17篇
  2010年   16篇
  2009年   11篇
  2008年   19篇
  2007年   17篇
  2006年   17篇
  2005年   17篇
  2004年   15篇
  2003年   25篇
  2002年   18篇
  2001年   14篇
  2000年   15篇
  1999年   23篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   9篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1989年   17篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   8篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1974年   7篇
  1973年   4篇
  1971年   7篇
  1970年   3篇
  1967年   4篇
  1966年   2篇
排序方式: 共有546条查询结果,搜索用时 31 毫秒
51.
The systemic lupus erythematosus-like syndrome in MRL/lpr mice involves high-titered IgG autoantibodies, particularly antinuclear Abs that target histones, DNA, and RNA particles. Although T cell help is required for the generation of antinuclear Abs, the epitopes recognized by such helper T cells are unknown. To address this question, we isolated and sequenced self peptides bound by MHC class II molecules from MRL/lpr mice. We identified a number of peptides that are not seen in similar preparations from nonautoimmune C3H animals. The "abnormal" peptide donors include histone, a protein component of a small nuclear ribonucleoprotein, ribosomal proteins, and RNA processing enzymes. We postulate that the peptides from these donors are T cell epitopes required for the generation of the most frequent antinuclear Abs specificities seen in MRL/lpr mice.  相似文献   
52.
OBJECTIVE: To compare two computer models of corpuscle sectioning and two algorithms for correction of ploidy measurements in tissue sections. STUDY DESIGN: Two models of corpuscle sectioning (the computed corpuscle sectioning program [CCSP] [Analyt Quant Cytol Histol 1997;19:376-386] and the ellipsoid sectioning program [ESP]) were run on a personal computer to generate synthetic corpuscle section data that model the sectioned nuclei in a tissue section. These synthetic data were analyzed by two algorithms for correction of ploidy measurements in tissue sections: the reference curve method (RCM) (Analyt Quant Cytol Histol 1997;19:376-386) and the method of McCready and Papadimitriou (MMP) (Analyt Quant Cytol 1983;5:117-123) for a variety of choices of section thickness and of nuclear section profile selection criteria. RESULTS: Previous recommendations (Analyt Quant Cytol Histol 1999;21:103-112) for optimization of ploidy analysis in tissue sections (selection of only center-containing sections of nuclei in ultrathin sections with a selection bias in favor of elliptical nuclear section profiles) are valid regardless of which corpuscle sectioning model and correction algorithm are employed. Perimeter correction may be desirable or necessary in some cases. The RCM has very significant advantages over the MMP, and the CCSP is more applicable to actual ploidy analysis than is the ESP. CONCLUSION: The RCM always should be used to correct ploidy measurements in tissue sections. The MMP should not be used as the sole method but, when used, should be used with and interpreted in the context of the RCM.  相似文献   
53.

Objectives

Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media.

Materials and Methods

Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson''s trichrome method.

Results

Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen.

Conclusions

Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn’t provide delayed enhancement.  相似文献   
54.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   
55.
Human immunodeficiency virus type 1 (HIV-1) encodes a polypeptide called Gag that is capable of forming virus-like particles (VLPs) in vitro in the absence of other cellular or viral constituents. During the late phase of HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. A combination of in vivo, in vitro, and structural studies have shown that Gag targeting and assembly on the PM are mediated by specific interactions between the myristoylated matrix [myr(+)MA] domain of Gag and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Exposure of the MA myristyl (myr) group is triggered by PI(4,5)P2 binding and is enhanced by factors that promote protein self-association. In the studies reported here, we demonstrate that myr exposure in MA is modulated by pH. Our data show that deprotonation of the His89 imidazole ring in myr(+)MA destabilizes the salt bridge formed between His89(Hδ2) and Glu12(COO-), leading to tight sequestration of the myr group and a shift in the equilibrium from trimer to monomer. Furthermore, we show that oligomerization of a Gag-like construct containing matrix-capsid is also pH-dependent. Disruption of the His?Glu salt bridge by single-amino acid substitutions greatly altered the myr-sequestered?myr-exposed equilibrium. In vivo intracellular localization data revealed that the H89G mutation retargets Gag to intracellular compartments and severely inhibits virus production. Our findings reveal that the MA domain acts as a “pH sensor” in vitro, suggesting that the effect of pH on HIV-1 Gag targeting and binding to the PM warrants investigation.  相似文献   
56.
57.
During the late phase of human immunodeficiency virus type-1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to lipid raft regions of specific cellular membranes, where they assemble and bud to form new virus particles. Gag binds preferentially to the plasma membrane (PM) of most hematopoietic cell types, a process mediated by interactions between the cellular PM marker phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P(2)) and Gag's N-terminally myristoylated matrix (MA) domain. We recently demonstrated that PI(4,5)P(2) binds to a conserved cleft on MA and promotes myristate exposure, suggesting a role as both a direct membrane anchor and myristyl switch trigger. Here we show that PI(4,5)P(2) is also capable of binding to MA proteins containing point mutations that inhibit membrane binding in vitro, and in vivo, including V7R, L8A and L8I. However, these mutants do not exhibit PI(4,5)P(2) or concentration-dependent myristate exposure. NMR studies of V7R and L8A MA reveal minor structural changes that appear to be responsible for stabilizing the myristate-sequestered (myr(s)) species and inhibiting exposure. Unexpectedly, the myristyl group of a revertant mutant with normal PM targeting properties (V7R,L21K) is also tightly sequestered and insensitive to PI(4,5)P(2) binding. This mutant binds PI(4,5)P(2) with twofold higher affinity compared with the native protein, suggesting a potential compensatory mechanism for membrane binding.  相似文献   
58.
We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single C(beta) atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information in the all-atom statistical potential and subsequently reducing to the C(beta) representation. One of the potentials includes interaction energies conditional on backbone geometries. A second potential separates sequence local from sequence nonlocal interactions and introduces a novel reference state for the sequence local interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy identification. Moreover, even upon passing to a reduced C(beta) representation, these statistical potentials outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys. Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the information content of the all-atom representation in the C(beta) representation. In addition, these new statistical potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and solvation energies to produce even better performing potentials. The ability of the C(beta) statistical potentials to accurately represent protein interactions bodes well for computational efficiency in protein folding calculations using reduced backbone representations, while the extensions to DOPE illustrate general principles for improving knowledge-based potentials.  相似文献   
59.
60.
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号