首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   97篇
  国内免费   11篇
  2021年   5篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   19篇
  2014年   26篇
  2013年   13篇
  2012年   24篇
  2011年   17篇
  2010年   16篇
  2009年   11篇
  2008年   19篇
  2007年   17篇
  2006年   17篇
  2005年   17篇
  2004年   15篇
  2003年   25篇
  2002年   18篇
  2001年   14篇
  2000年   15篇
  1999年   23篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   9篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1989年   17篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   8篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1974年   7篇
  1973年   4篇
  1971年   7篇
  1970年   3篇
  1967年   4篇
  1966年   2篇
排序方式: 共有546条查询结果,搜索用时 93 毫秒
41.
In vivo, the pesticide rotenone induces degeneration of dopamine neurons and parkinsonian-like pathology in adult rats. In the current study, we utilized primary ventral mesencephalic (VM) cultures from E15 rats as an in vitro model to examine the mechanism underlying rotenone-induced death of dopamine neurons. After 11 h of exposure to 30 nm rotenone, the number of dopamine neurons identified by tyrosine hydroxylase (TH) immunostaining declined rapidly with only 23% of the neurons surviving. By contrast, 73% of total cells survived rotenone treatment, indicating that TH+ neurons are more sensitive to rotenone. Examination of the role of apoptosis in TH+ neuron death, revealed that 10 and 30 nm rotenone significantly increased the number of apoptotic TH+ neurons from 7% under control conditions to 38 and 55%, respectively. The increase in apoptotic TH+ neurons correlated with an increase in immunoreactivity for active caspase-3 in TH+ neurons. The caspase-3 inhibitor, DEVD, rescued a significant number of TH+ neurons from rotenone-induced death. Furthermore, this protective effect lasted for at least 32 h post-rotenone and DEVD exposure, indicating lasting neuroprotection achieved with an intervention prior to the death commitment point. Our results show for the first time in primary dopamine neurons that, at low nanomolar concentrations, rotenone induces caspase-3-mediated apoptosis. Understanding the mechanism of rotenone-induced apoptosis in dopamine neurons may contribute to the development of new neuroprotective strategies against Parkinson's disease.  相似文献   
42.
Because the mammary parenchyma is accessible from the exterior of an animal through the mammary duct, adenovirus transduction holds promise for the short-term delivery of genes to the mammary epithelium for both research and therapeutic purposes. To optimize the procedure and evaluate its efficacy, an adenovirus vector (human adenovirus type 5) encoding a green fluorescent protein (GFP) reporter and deleted of E1 and E3 was injected intraductally into the mouse mammary gland. We evaluated induction of inflammation (by intraductal injection of [(14)C]sucrose and histological examination), efficiency of transduction, and maintenance of normal function in transduced cells. We found that transduction of the total epithelium in the proximal portion of the third mammary gland varied from 7% to 25% at a dose of 2 x 10(6) PFU of adenovirus injected into day 17 pregnant mice. Transduction was maintained for at least 7 days with minimal inflammatory response; however, significant mastitis was observed 12 days after transduction. Adenovirus transduction could also be used in the virgin animal with little mastitis 3 days after transduction. Transduced mammary epithelial cells maintained normal morphology and function. Our results demonstrate that intraductal injection of adenovirus vectors provides a versatile and noninvasive method of investigating genes of interest in mouse mammary epithelial cells.  相似文献   
43.
Ge M  Freed JH 《Biophysical journal》2003,85(6):4023-4040
The relationship between bilayer hydration and the dynamic structure of headgroups and interbilayer water in multilamellar vesicles is investigated by electron spin resonance methods. Temperature variations of the order parameter of a headgroup spin label DPP-Tempo in DOPC in excess water and partially dehydrated (10 wt % water) show a cusp-like pattern around the main phase transition, Tc. This pattern is similar to those of temperature variations of the quadrupolar splitting of interbilayer D2O in PC and PE bilayers previously measured by 2H NMR, indicating that the ordering of the headgroup and the interbilayer water are correlated. The cusp-like pattern of these and other physical properties around Tc are suggestive of quasicritical fluctuations. Also, an increase (a decrease) in ordering of DPP-Tempo is correlated with water moving out of (into) interbilayer region into (from) the bulk water phase near the freezing point, Tf. Addition of cholesterol lowers Tf, which remains the point of increasing headgroup ordering. Using the small water-soluble spin probe 4-PT, it is shown that the ordering of interbilayer water increases with bilayer dehydration. It is suggested that increased ordering in the interbilayer region, implying a lowering of entropy, will itself lead to further dehydration of the interbilayer region until its lowered pressure resists further flow, i.e., an osmotic phenomenon.  相似文献   
44.
The use of 2D-electron-electron double resonance (2D-ELDOR) for the characterization of the boundary lipid in membrane vesicles of DPPC and gramicidin A' (GA) is reported. We show that 2D-ELDOR, with its enhanced spectral resolution to dynamic structure as compared with continuous-wave electron spin resonance, provides a reliable and useful way of studying lipid-protein interactions. The 2D-ELDOR spectra of the end-chain spin label 16-PC in DPPC/GA vesicles is composed of two components, which are assigned to the bulk lipids (with sharp auto peaks and crosspeaks) and to the boundary lipids (with broad auto peaks). Their distinction is clearest for higher temperatures and higher GA concentrations. The quantitative analysis of these spectra shows relatively faster motions and very low ordering for the end chain of the bulk lipids, whereas the boundary lipids show very high "y-ordering" and slower motions. The y-ordering represents a dynamic bending at the end of the boundary lipid acyl chain, which can then coat the GA molecules. These results are consistent with the previous studies by Ge and Freed (1999) using continuous-wave electron spin resonance, thereby supporting their model for GA aggregation and H(II) phase formation for high GA concentrations. Improved instrumental and simulation methods have been employed.  相似文献   
45.
Bovine calf articular chondrocytes, either primary or expanded in monolayers (2D) with or without 5 ng/ml fibroblast growth factor-2 (FGF-2), were cultured on three-dimensional (3D) biodegradable polyglycolic acid (PGA) scaffolds with or without 10 ng/ml bone morphogenetic protein-2 (BMP-2). Chondrocytes expanded without FGF-2 exhibited high intensity immunostaining for smooth muscle alpha-actin (SMA) and collagen type I and induced shrinkage of the PGA scaffold, thus resembling contractile fibroblasts. Chondrocytes expanded in the presence of FGF-2 and cultured 6 weeks on PGA scaffolds yielded engineered cartilage with 3.7-fold higher cell number, 4.2-fold higher wet weight, and 2.8-fold higher wet weight glycosaminoglycan (GAG) fraction than chondrocytes expanded without FGF-2. Chondrocytes expanded with FGF-2 and cultured on PGA scaffolds in the presence of BMP-2 for 6 weeks yielded engineered cartilage with similar cellularity and size, 1.5-fold higher wet weight GAG fraction, and more homogenous GAG distribution than the corresponding engineered cartilage cultured without BMP-2. The presence of BMP-2 during 3D culture had no apparent effect on primary chondrocytes or those expanded without FGF-2. In summary, the presence of FGF-2 during 2D expansion reduced chondrocyte expression of fibroblastic molecules and induced responsiveness to BMP-2 during 3D cultivation on PGA scaffolds.  相似文献   
46.
Effects of oxygen on engineered cardiac muscle   总被引:6,自引:0,他引:6  
Concentration gradients associated with the in vitro cultivation of engineered tissues that are vascularized in vivo result in the formation of only a thin peripheral tissue-like region (e.g., approximately 100 microm for engineered cardiac muscle) around a relatively cell-free interior. We previously demonstrated that diffusional gradients within engineered cardiac constructs can be minimized by direct perfusion of culture medium through the construct. In the present study, we measured the effects of medium perfusion rate and local oxygen concentration (p(O2)) on the in vitro reconstruction of engineered cardiac muscle. Neonatal rat cardiomyocytes were seeded onto biodegradable polymer scaffolds (fibrous discs, 1.1 cm diameter x 2 mm thick, made of polyglycolic acid, 24 x 10(6) cells per scaffold). The resulting cell-polymer constructs were cultured for a total of 12 days in serially connected cartridges (n = 1-8), each containing one construct directly perfused with culture medium at a flow rate of 0.2-3.0 mL/min. In all groups, oxygen concentration decreased due to cell respiration, and depended on construct position in the series and medium flow rate. Higher perfusion rates and higher p(O2) correlated with more aerobic cell metabolism, and higher DNA and protein contents. Constructs cultured at p(O2) of 160 mm Hg had 50% higher DNA and protein contents, markedly higher expression of sarcomeric alpha-actin, better organized sarcomeres and cell junctions, and 4.5-fold higher rate of cell respiration as compared to constructs cultured at p(O2) of 60 mm Hg. Contraction rates of the corresponding cardiac cell monolayers were 40% higher at p(O2) of 160 than 60 mm Hg. The control of oxygen concentration in cell microenvironment can thus improve the structure and function of engineered cardiac muscle. Experiments of this kind can form a basis for controlled studies of the effects of oxygen on the in vitro development of engineered tissues.  相似文献   
47.
Contribution of Langerhans cell-derived IL-18 to contact hypersensitivity   总被引:4,自引:0,他引:4  
The epidermal Langerhans cells (LC), a member of the dendritic cell family, and the LC-derived cytokine IL-12 play a pivotal role in the initiation of contact hypersensitivity (CHS), a Th1 immune response in the skin. Because IL-18, another LC-derived cytokine, shares functional and biological properties with IL-12, we examined a potential role for IL-18 in CHS initiation. Our studies demonstrated that during the induction phase of murine CHS, IL-18 mRNA was significantly up-regulated in the skin-draining lymph nodes (LN). Migratory hapten-modified LC in LN expressed high levels of IL-18 mRNA and secreted functional IL-18 protein. LN cells produced significant amounts of IFN-gamma following in vitro IL-12 stimulation, which could be partially blocked by anti-IL-18 Ab, suggesting a synergistic role for endogenous IL-18 in IFN-gamma production by LN cells. Because mature IL-18 requires cleavage of immature precursors by caspase-1, we further examined IL-12-induced IFN-gamma production in caspase-1(-/-) LN cells. An impaired IFN-gamma production was seen in caspase-1(-/-) LN cells, which could be restored by addition of exogenous IL-18, supporting a role for caspase-1-cleaved, mature IL-18 in IFN-gamma production. Finally, in vivo studies showed that CHS responses were significantly inhibited in mice treated with neutralizing IL-18 Ab as well as in caspase-1(-/-) mice deficient in mature IL-18, indicating functional relevance for IL-18 in CHS. Taken together, our studies demonstrate that LC-derived IL-18 significantly contributes to CHS initiation.  相似文献   
48.
Viral late domains   总被引:10,自引:0,他引:10       下载免费PDF全文
Freed EO 《Journal of virology》2002,76(10):4679-4687
  相似文献   
49.
Bioreactor studies of native and tissue engineered cartilage   总被引:12,自引:0,他引:12  
Functional tissue engineering of cartilage involves the use of bioreactors designed to provide a controlled in vitro environment that embodies some of the biochemical and physical signals known to regulate chondrogenesis. Hydrodynamic conditions can affect in vitro tissue formation in at least two ways: by direct effects of hydrodynamic forces on cell morphology and function, and by indirect flow-induced changes in mass transfer of nutrients and metabolites. In the present work, we discuss the effects of three different in vitro environments: static flasks (tissues fixed in place, static medium), mixed flasks (tissues fixed in place, unidirectional turbulent flow) and rotating bioreactors (tissues dynamically suspended in laminar flow) on engineered cartilage constructs and native cartilage explants. As compared to static and mixed flasks, dynamic laminar flow in rotating bioreactors resulted in the most rapid tissue growth and the highest final fractions of glycosaminoglycans and total collagen in both tissues. Mechanical properties (equilibrium modulus, dynamic stiffness, hydraulic permeability) of engineered constructs and explanted cartilage correlated with the wet weight fractions of glycosaminoglycans and collagen. Current research needs in the area of cartilage tissue engineering include the utilization of additional physiologically relevant regulatory signals, and the development of predictive mathematical models that enable optimization of the conditions and duration of tissue culture.  相似文献   
50.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号