首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   89篇
  国内免费   4篇
  2023年   4篇
  2022年   4篇
  2021年   25篇
  2020年   22篇
  2019年   19篇
  2018年   26篇
  2017年   21篇
  2016年   38篇
  2015年   55篇
  2014年   65篇
  2013年   93篇
  2012年   103篇
  2011年   80篇
  2010年   46篇
  2009年   59篇
  2008年   57篇
  2007年   59篇
  2006年   56篇
  2005年   55篇
  2004年   52篇
  2003年   59篇
  2002年   56篇
  2001年   6篇
  2000年   12篇
  1999年   11篇
  1998年   15篇
  1997年   15篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   6篇
  1992年   13篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   13篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1971年   2篇
  1967年   4篇
  1966年   3篇
  1955年   2篇
排序方式: 共有1268条查询结果,搜索用时 31 毫秒
71.
Abstract.— Determining the way in which deleterious mutations interact to effect fitness is crucial to numerous areas in evolutionary biology. For example, if each additional mutation leads to a greater decrease in log fitness than the last, termed synergistic epistasis, then sex and recombination provide an advantage because they enable deleterious mutations to be eliminated more efficiently. However, there is a severe shortage of relevant empirical data, especially of the form that can help test mutational explanations for the widespread occurrence of sex. Here, we test for epistasis in the parasitic wasp Nasonia vitripennis , examining the fitness consequences of chemically induced deleterious mutations. We examine two components of fitness, both of which are thought to be important in natural populations of parasitic wasps: longevity and egg production. Our results show synergistic epistasis for longevity, but not for egg production.  相似文献   
72.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   
73.
74.
We have mutated a conserved residue of the death domain of the interleukin-1 (IL-1) receptor-associated kinase (IRAK), threonine 66. The substitution of Thr-66 with alanine or glutamate prevented spontaneous activation of NF-kappaB by overexpressed IRAK but enhanced IL-1-induced activation of the factor. Like the kinase-inactivating mutation, K239S, the T66A and T66E mutations interfered with the ability of IRAK to autophosphorylate and facilitated the interactions of IRAK with TRAF6 and with the IL-1 receptor accessory protein, AcP. Wild-type IRAK constructs tagged with fluorescent proteins formed complexes that adopted a punctate distribution in the cytoplasm. The Thr-66 mutations prevented the formation of these complexes. Measurements of fluorescence resonance energy transfer among fluorescent constructs showed that the Thr-66 mutations abolished the capacity of IRAK to dimerize. In contrast, the K239S mutation did not inhibit dimerization of IRAK as evidenced by fluorescence resonance energy transfer measurements, even though microscopy showed that it prevented the formation of punctate complexes. Our results show that Thr-66 plays a crucial role in the ability of IRAK to form homodimers and that its kinase activity regulates its ability to form high molecular weight complexes. These properties in turn determine key aspects of the signaling function of IRAK.  相似文献   
75.
76.
Recent studies show that cell dispersal is a widespread phenomenon in the development of early vertebrate embryos. These cell movements coincide with major decisions for the spatial organization of the embryo, and they parallel genetic patterning events. For example, in the central nervous system, cell dispersal is first mainly anterior–posterior and subsequently dorsal–ventral. Thus, genes expressed in signaling centers of the embryo probably control cell movements, tightly linking cellular and genetic patterning. Cell dispersal might be important for the correct positioning of cells and tissues involved in intercellular signaling. The emergence of cell dispersal at the onset of vertebrate evolution indicates a shift from early, lineage-based cellular patterning in small embryos to late, movement-based cellular patterning of polyclones in large embryos. The conservation of the same basic body plan by invertebrate and vertebrate chordates suggests that evolution of the embryonic period preceding the phylotypic stage was by intercalary co-option of basic cell activities present in the ancestral metazoan cell.  相似文献   
77.
To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  相似文献   
78.
Despite numerous advances in the identification of the molecular machinery for clathrin-mediated budding at the plasma membrane, the mechanistic details of this process remain incomplete. Moreover, relatively little is known regarding the regulation of clathrin-mediated budding at other membrane systems. To address these issues, we have utilized the powerful new approach of subcellular proteomics to identify novel proteins present on highly enriched clathrin-coated vesicles (CCVs). Among the ten novel proteins identified is the rat homologue of a predicted gene product from human, mouse, and Drosophila genomics projects, which we named enthoprotin. Enthoprotin is highly enriched on CCVs isolated from rat brain and liver extracts. In cells, enthoprotin demonstrates a punctate staining pattern that is concentrated in a perinuclear compartment where it colocalizes with clathrin and the clathrin adaptor protein (AP)1. Enthoprotin interacts with the clathrin adaptors AP1 and with Golgi-localized, gamma-ear-containing, Arf-binding protein 2. Through its COOH-terminal domain, enthoprotin binds to the terminal domain of the clathrin heavy chain and stimulates clathrin assembly. These data suggest a role for enthoprotin in clathrin-mediated budding on internal membranes. Our study reveals the utility of proteomics in the identification of novel vesicle trafficking proteins.  相似文献   
79.
80.
Feedback regulations are integral components of the cAMP signaling required for most cellular processes, including gene expression and cell differentiation. Here, we provide evidence that one of these feedback regulations involving the cyclic nucleotide phosphodiesterase PDE4D plays a critical role in cAMP signaling during the differentiation of granulosa cells of the ovarian follicle. Gonadotropins induce PDE4D mRNA and increase the cAMP hydrolyzing activity in granulosa cells, demonstrating that a feedback regulation of cAMP is operating in granulosa cells in vivo. Inactivation of the PDE4D by homologous recombination is associated with an altered pattern of cAMP accumulation induced by the gonadotropin LH/human chorionic gonadotropin (hCG), impaired female fertility, and a markedly decreased ovulation rate. In spite of a disruption of the cAMP response, LH/hCG induced P450 side chain cleavage expression and steroidogenesis in a manner similar to wild-type controls. Morphological examination of the ovary of PDE4D-/- mice indicated luteinization of antral follicles with entrapped oocytes. Consistent with the morphological finding of unruptured follicles, LH/hCG induction of genes involved in ovulation, including cyclooxygenase-2, progesterone receptor, and the downstream genes, is markedly decreased in the PDE4D-/- ovaries. These data demonstrate that PDE4D regulation plays a critical role in gonadotropin mechanism of action and suggest that the intensity and duration of the cAMP signal defines the pattern of gene expression during the differentiation of granulosa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号