首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6141篇
  免费   615篇
  国内免费   9篇
  2022年   32篇
  2021年   91篇
  2020年   79篇
  2019年   70篇
  2018年   94篇
  2017年   78篇
  2016年   114篇
  2015年   210篇
  2014年   240篇
  2013年   290篇
  2012年   362篇
  2011年   407篇
  2010年   262篇
  2009年   210篇
  2008年   318篇
  2007年   355篇
  2006年   339篇
  2005年   339篇
  2004年   291篇
  2003年   269篇
  2002年   295篇
  2001年   75篇
  2000年   81篇
  1999年   96篇
  1998年   86篇
  1997年   57篇
  1996年   48篇
  1995年   59篇
  1994年   49篇
  1993年   45篇
  1992年   53篇
  1991年   59篇
  1990年   58篇
  1989年   52篇
  1988年   46篇
  1987年   36篇
  1986年   34篇
  1985年   46篇
  1984年   34篇
  1983年   43篇
  1982年   46篇
  1981年   52篇
  1980年   51篇
  1979年   40篇
  1978年   32篇
  1976年   41篇
  1975年   37篇
  1974年   25篇
  1973年   27篇
  1969年   24篇
排序方式: 共有6765条查询结果,搜索用时 15 毫秒
991.
In host and cancer tissues, drug metabolism and susceptibility to drugs vary in a circadian (24 h) manner. In particular, the efficacy of a cell cycle specific (CCS) cytotoxic agent is affected by the daily modulation of cell cycle activity in the target tissues. Anti-cancer chronotherapy, in which treatments are administered at a particular time each day, aims at exploiting these biological rhythms to reduce toxicity and improve efficacy of the treatment. The circadian status, which is the timing of physiological and behavioral activity relative to daily environmental cues, largely determines the best timing of treatments. However, the influence of variations in tumor kinetics has not been considered in determining appropriate treatment schedules. We used a simple model for cell populations under chronomodulated treatment to identify which biological parameters are important for the successful design of a chronotherapy strategy. We show that the duration of the phase of the cell cycle targeted by the treatment and the cell proliferation rate are crucial in determining the best times to administer CCS drugs. Thus, optimal treatment times depend not only on the circadian status of the patient but also on the cell cycle kinetics of the tumor. Then, we developed a theoretical analysis of treatment outcome (TATO) to relate the circadian status and cell cycle kinetic parameters to the treatment outcomes. We show that the best and the worst CCS drug administration schedules are those with 24 h intervals, implying that 24 h chronomodulated treatments can be ineffective or even harmful if administered at wrong circadian times. We show that for certain tumors, administration times at intervals different from 24 h may reduce these risks without compromising overall efficacy.  相似文献   
992.
993.
994.
995.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   
996.
Human phospholipid scramblase 1 (hPLSCR1), a type II integral class membrane protein, is known to mediate bidirectional scrambling of phospholipids in a Ca2+-dependent manner. hPLSCR2, a homolog of hPLSCR1 that lacks N-terminal proline-rich domain (PRD), did not show scramblase activity. We attribute this absence of scramblase activity of hPLSCR2 to the lack of N-terminal PRD. Hence to investigate the above hypothesis, we added the PRD of hPLSCR1 to hPLSCR2 (PRD-hPLSCR2) and checked whether scramblase activity was restored. Functional assays showed that the addition of PRD to hPLSCR2 restored scrambling activity, and deletion of PRD in hPLSCR1 (ΔPRD-hPLSCR1) resulted in a lack of activity. These results suggest that PRD is crucial for the function of the protein. The effects of the PRD deletion in hPLSCR1 and the addition of PRD to hPLSCR2 were characterized using various spectroscopic techniques. Our results clearly showed that hPLSCR1 and PRD-hPLSCR2 showed Ca2+-dependent aggregation and scrambling activity, whereas hPLSCR2 and ΔPRD-hPLSCR1 did not show aggregation and activity. Thus we conclude that scramblases exhibit Ca2+-dependent scrambling activity by aggregation of protein. Our results provide a possible mechanism for phospholipid scrambling mediated by PLSCRs and the importance of PRD in its function and cellular localization.  相似文献   
997.
998.
Rapid diagnostic tests (RDT) are valuable tools that support prudent and timely use of antimalarial drugs, particularly if reliable microscopy is not available. However, the performance and reliability of these tests vary between and within geographical regions. The present study evaluated the performance of routine malaria RDT in Kenyan febrile patients in Busia County, Kenya. A cross sectional study design was employed to recruit febrile patients attending health facilities between August and November 2016. A total of 192 febrile patients who were slide positive and negative were evaluated for their infection status by nested PCR and RDTs (PfHRP2/pLDH). In addition, P. falciparum diversity of the histidine-rich proteins 2 and 3, that influences the RDT test results were determined. All individuals were P. falciparum positive. Among the investigated 192 febrile patients, 76 (40%) were positive by microscopy, 101 (53%) by RDTs and 80 (42%) were PCR positive. The performance of the CareStart? HRP2/pLDH (pf) RDTs was better than microscopy (Sensitivity 94%; Specificity 75%) and Nucleic acid testing (sensitivity 95%, specificity 77%) with high negative predictive values, indicating the suitability of the RDT in routine practice. Specific pfhrp2/pfhrp3 deletions shown to associate with RDT false negativity was not observed. However, high genetic diversity among pfhrp2 gene was observed. Eleven new PfHRP2 and nine PfHRP3 repeats were observed. False positivity by microscopy and under reporting of infections may thus be a barrier in malaria control and elimination programs. The HRP2/pLDH(Pf) based RDT yet demonstrate to be an effective tool for malaria surveillance program.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号