首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5420篇
  免费   418篇
  2024年   2篇
  2023年   32篇
  2022年   41篇
  2021年   153篇
  2020年   70篇
  2019年   119篇
  2018年   144篇
  2017年   131篇
  2016年   200篇
  2015年   308篇
  2014年   345篇
  2013年   443篇
  2012年   520篇
  2011年   497篇
  2010年   304篇
  2009年   252篇
  2008年   338篇
  2007年   346篇
  2006年   312篇
  2005年   256篇
  2004年   247篇
  2003年   220篇
  2002年   196篇
  2001年   38篇
  2000年   21篇
  1999年   32篇
  1998年   44篇
  1997年   20篇
  1996年   28篇
  1995年   21篇
  1994年   15篇
  1993年   13篇
  1992年   27篇
  1991年   15篇
  1990年   12篇
  1989年   8篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1965年   2篇
排序方式: 共有5838条查询结果,搜索用时 31 毫秒
991.
The prevention of implant‐associated infection, one the most feared complications in orthopaedic surgery, remains a major clinical challenge and urges development of effective methods to prevent bacterial colonization of implanted devices. Alpha‐helical antimicrobial peptides (AMPs) may be promising candidates in this respect due to their potent and broad‐spectrum antimicrobial activity, their low tendency to elicit resistance and possible retention of efficacy in the immobilized state. The aim of this study was to evaluate the potential of five different helical AMPs, the cathelicidins BMAP‐27 and BMAP‐28, their (1–18) fragments and the rationally designed, artificial P19(9/G7) peptide, for the prevention of orthopaedic implant infections. Peptides were effective at micromolar concentrations against 22 Staphylococcus and Streptococcus isolates from orthopaedic infections, while only BMAP‐28 and to a lesser extent BMAP‐27 were active against Enterococcus faecalis. Peptides in solution showed activities comparable to those of cefazolin and linezolid, on a molar basis, and also a variable capacity to neutralize bacterial lipopolysaccharide, while devoid of adverse effects on MG‐63 osteoblast cells at concentrations corresponding to the MIC. The (1–18) BMAP fragments and P19(9/G7) were selected for further examination, based on better selectivity indices, and showed effectiveness in the presence of hyaluronic acid and in synovial fluid, while human serum affected their activity to variable extents, with BMAP‐27(1–18) best retaining activity. This peptide was immobilized on streptavidin–resin beads and retained activity against reference Staphylococcus epidermidis and Staphylococcus aureus strains, with negligible toxicity towards osteoblasts, underlining its potential for the development of infection‐resistant biomaterials for orthopaedic application. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
992.
We showed previously that insertion of Synechocystis Δ12‐desaturase in salmonella's membrane alters membrane physical state (MPS), followed by the expression of stress genes causing inability to survive within murine macrophages (MΦ). Recently, we showed that expression of one membrane lipid domain (MLD) of Δ12‐desaturase (ORF200) interferes with salmonella MPS, causing loss of virulence in mice and immunoprotection. Here, we postulate that an α‐antimicrobial peptide (α‐AMP) intercalates within membrane lipids, and depending on its amino acid sequence, it does so within specific key sensors of MLD. In this study, we choose as target for a putative synthetic AMP, PhoP/PhoQ, a sensor that responds to low Mg2+ concentration. We synthesised a modified DNA fragment coding for an amino acid sequence (NUF) similar to that fragment and expressed it in salmonella typhimurium. We showed that the pattern of gene expression controlled by PhoP/PhoQ highlights dysregulation of pathways involving phospholipids biosynthesis, stress proteins and genes coding for antigens. RNA‐Seq of strain expressing ORF200 showed that the pattern of those genes is also altered here. Accumulation of NUF conferred temporary immunoprotection. This represents a powerful procedure to address synthetic α‐AMPs to a specific MLD generating live non‐virulent bacterial strains.  相似文献   
993.

Background

Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences.

Results

In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO3 2?) and tellurite (TeO3 2?) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO3 2? and 0.5 mM TeO3 2? to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO3 2? and TeO3 2? bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO3 2? bioreduction, while TeO3 2? bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs.

Conclusions

In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.
  相似文献   
994.
While vaccination is the single most effective intervention to drastically reduce severe disease and death following SARS-CoV-2 infection, as shown in UK and Israel, some serious concerns have been raised for an unusual adverse drug reaction (ADR), including vaccine-induced immune thrombotic thrombocytopenia (VITT) with concurrent low platelets as well as capillary leak syndrome. In fact, the overall safety of the vaccine is highlighted by the low frequency of ADR considering that in UK, by the early June, 40 million first doses and 29 million second doses have been injected; nonetheless, 390 thrombotic events, including 71 fatal events have been reported. Interestingly, the cases reported low platelet counts with the presence of anti-platelet factor-4 (PF4) antibodies, indicating an abnormal clotting reaction. Here, out of three referred cases, we report a post-vaccine clinical case of fatal thrombosis with postmortem examination and whole exome sequencing (WES) analysis, whose pathogenesis appeared associated to a preexisting condition of thrombocytopenia due to myelodysplasia.Subject terms: Diseases, Medical research  相似文献   
995.
Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.Subject terms: Kinases, Autophagy  相似文献   
996.
997.
998.
999.
Generalized pustular psoriasis (GPP) is a rare and yet potentially lethal clinical variant of psoriasis, characterized by the formation of sterile cutaneous pustules, neutrophilia, fever and features of systemic inflammation. We sequenced the exomes of five unrelated individuals diagnosed with GPP. Nonsynonymous, splice-site, insertion, and deletion variants with an estimated population frequency of <0.01 were considered as candidate pathogenic mutations. A homozygous c.338C>T (p.Ser113Leu) missense substitution of IL36RN was identified in two individuals, with a third subject found to be a compound heterozygote for c.338C>T (p.Ser113Leu) and a c.142C>T (p.Arg48Trp) missense substitution. IL36RN (previously known as IL1F5) encodes an IL-1 family receptor antagonist, which opposes the activity of the IL-36A and IL-36G innate cytokines. Homology searches revealed that GPP mutations alter evolutionarily conserved residues. Homozygosity for the c.338C>T (p.Ser113Leu) variant is associated with an elevated proinflammatory response following ex vivo stimulation with IL36A. These findings suggest loss of function of IL36RN as the genetic basis of GPP and implicate innate immune dysregulation in this severe episodic inflammatory disease, thereby highlighting IL-1 signaling as a potential target for therapeutic intervention.  相似文献   
1000.
Mucopolysaccharidoses (MPS) diagnosis is often delayed and irreversible organ damage can occur, making possible therapies less effective. This highlights the importance of early and accurate diagnosis. A high-throughput procedure for the simultaneous determination of glucosamine and galactosamine produced from urinary galactosaminoglycans and glucosaminoglycans by capillary electrophoresis (CE) and HPLC has been performed and validated in subjects affected by various MPS including their mild and severe forms, Hurler and Hurler-Scheie, Hunter, Sanfilippo, Morquio, and Maroteaux-Lamy. Contrary to other analytical approaches, the present single analytical procedure, which is able to measure total abnormal amounts of urinary GAGs, high molecular mass, and related fragments, as well as specific hexosamines belonging to a group of GAGs, would be useful for possible application in their early diagnosis. After a rapid urine pretreatment, free hexosamines are generated by acidic hydrolysis, derivatized with 2-aminobenzoic acid and separated by CE/UV in ∼10 min and reverse-phase (RP)-HPLC in fluorescence in ∼21 min. The total content of hexosamines was found to be indicative of abnormal urinary excretion of GAGs in patients compared to the controls, and the galactosamine/glucosamine ratio was observed to be related to specific MPS syndromes in regard to both their mild and severe forms. As a consequence, important correlations between analytical response and clinical diagnosis and the severity of the disorders were observed. Furthermore, we can assume that the severity of the syndrome may be ascribed to the quantity of total GAGs, as high-molecular-mass polymers and fragments, accumulated in cells and directly excreted in the urine. Finally, due to the high-throughput nature of this approach and to the equipment commonly available in laboratories, this method is suitable for newborn screening in preventive public health programs for early detection of MPS disorders, diagnosis, and their treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号