首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   38篇
  国内免费   1篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   4篇
  2017年   11篇
  2016年   14篇
  2015年   20篇
  2014年   21篇
  2013年   47篇
  2012年   37篇
  2011年   49篇
  2010年   30篇
  2009年   28篇
  2008年   39篇
  2007年   44篇
  2006年   42篇
  2005年   29篇
  2004年   28篇
  2003年   29篇
  2002年   23篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   3篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   10篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有688条查询结果,搜索用时 15 毫秒
91.
Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as beta-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan biosynthesis inhibitors capable of overcoming these resistance mechanisms. The microbial products were first screened according to their differential activity against Staphylococcus aureus and its L-form. Then, activities insensitive to the addition of a beta-lactamase cocktail or d-alanyl-d-alanine affinity resin were selected. Thirty-five lantibiotics were identified from a library of broth extracts produced by 40,000 uncommon actinomycetes. Five of them showed structural characteristics that did not match with any known microbial metabolite. In this study, we report on the production, structure determination, and biological activity of one of these novel lantibiotics, namely, planosporicin, which is produced by the uncommon actinomycete Planomonospora sp. Planosporicin is a 2194 Da polypeptide originating from 24 proteinogenic amino acids. It contains lanthionine and methyllanthionine amino acids generating five intramolecular thioether bridges. Planosporicin selectively blocks peptidoglycan biosynthesis and causes accumulation of UDP-linked peptidoglycan precursors in growing bacterial cells. On the basis of its mode of action and globular structure, planosporicin can be assigned to the mersacidin (20 amino acids, 1825 Da) and the actagardine (19 amino acids, 1890 Da) subgroup of type B lantibiotics. Considering its spectrum of activity against Gram-positive pathogens of medical importance, including multi-resistant clinical isolates, and its efficacy in vivo, planosporicin represents a potentially new antibiotic to treat emerging pathogens.  相似文献   
92.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.  相似文献   
93.
The results of a conformational study by nuclear magnetic spectroscopy and computational methods on a series of point-mutated synthetic peptides, containing 14 amino acid residues and mimicking the region containing the Arg-Lys dibasic cleavage site of pro-somatostatin, have confirmed the possible role of a well defined secondary structure in the recognition phenomenon by processing enzymes. The importance of the residues located near the Arg-Lys dibasic site in the C-terminal region of the pro-hormone for the cleavage of the precursor into somatostatin-14 has been confirmed. The present structural analysis indicates the occurrence of two β-turns in the 4–7 and 11–14 regions, flanking the cleavage site, for all the peptides recognized as substrates by the processing enzyme. Interestingly, in the point-mutated analogue not processed by the enzyme and containing the replacement of proline by alanine in position 5 the first β-turn is displaced by one residue and involves the Ala5-Arg8 segment. This observation may explain the lack of recognition by the maturation enzyme. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
94.
A modified β-cyclodextrin bearing a 2-aminomethylpyridine binding site for copper(II) (6-deoxy-6-[N-(2-methylamino)pyridine)]-β-cyclodextrin, CDampy was synthesized by C6-monofunctionalization. The acid-base properties of the new ligand in aqueous solution were investigated by potentiometry and calorimetry, and its conformations as a function of pH were studied by NMR and circular dichroism (c.d.). The formation of binary copper(II) complexes was studied by potentiometry, EPR, and c.d. The copper(II) complex was used as chiral selector for the HPLC enantiomeric separation of underivatized aromatic amino acids. Enantioselectivity in the overall stability constants of the ternary complexes with D- or L-Trp was detected by potentiometry, whereas the complexes of the Ala enantiomers did not show any difference in stability. These results were consistent with a preferred cis coordination of the amino group of the ligand and of the amino acid in the ternary complexes (“cis effect”), which leads to the inclusion of the aromatic side chain of D-Trp, but not of that of L-Trp. In Trp-containing ternary complexes, the two enantiomers showed differences in the fluorescence lifetime distribution, consistent with only one conformer of D-Trp and two conformers of L-Trp, and the latter were found to be more accessible to fluorescence quenching by acrylamide and KI. Chirality 9:341–349, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
95.
Actigraphy is the reference objective method to measure circadian rhythmicity. One simpler subjective approach to assess the circadian typology is the Morningness–Eveningness Questionnaire (MEQ) by Horne and Ostberg. In this study, we compared the MEQ score against the actigraphy-based circadian parameters MESOR, amplitude and acrophase in a sample of 54 students of the University of Milan in Northern Italy. MEQ and the acrophase resulted strongly and inversely associated (r = ?0.84, p < 0.0001), and their relationship exhibited a clear-cut linear trend. We thus used linear regression to develop an equation enabling us to predict the value of the acrophase from the MEQ score. The parameters of the regression model were precisely estimated, with the slope of the regression line being significantly different from 0 (p < 0.0001). The best-fit linear equation was: acrophase (min) = 1238.7–5.49·MEQ, indicating that each additional point in the MEQ score corresponded to a shortening of the acrophase of approximately 5 min. The coefficient of determination, R2, was 0.70. The residuals were evenly distributed and did not show any systematic pattern, thus indicating that the linear model yielded a good, balanced prediction of the acrophase throughout the range of the MEQ score. In particular, the model was able to accurately predict the mean values of the acrophase in the three chronotypes (Morning-, Neither-, and Evening-types) in which the study subjects were categorized. Both the confidence and prediction limits associated to the regression line were calculated, thus providing an assessment of the uncertainty associated with the prediction of the model. In particular, the size of the two-sided prediction limits for the acrophase was about ±100 min in the midrange of the MEQ score. Finally, k-fold cross-validation showed that both the model’s predictive ability on new data and the model’s stability to changes in the data set used for parameter estimation were good. In conclusion, the actigraphy-based acrophase can be predicted using the MEQ score in a population of college students of North Italy.  相似文献   
96.

Background  

The ability of cytosine deaminase (CD) to convert the antifungal agent 5-fluorocytosine (5-FC) into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU) raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT) aiming to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv) format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies.  相似文献   
97.
The biological function of chaperone complexes is to assist the folding of non-native proteins. The widely studied GroEL chaperonin is a double-barreled complex that can trap non-native proteins in one of its two barrels. The ATP-driven binding of a GroES cap then results in a major structural change of the chamber where the substrate is trapped and initiates a refolding attempt. The two barrels operate anti-synchronously. The central region between the two barrels contains a high concentration of disordered protein chains, the role of which was thus far unclear. In this work we report a combination of atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES chaperonin complex. Surprisingly, our simulations show that the equatorial region provides a translocation channel that will block the passage of folded proteins but allows the passage of secondary units with the diameter of an alpha-helix. We compute the free-energy barrier that has to be overcome during translocation and find that it can easily be crossed under the influence of thermal fluctuations. Hence, strongly non-native proteins can be squeezed like toothpaste from one barrel to the next where they will refold. Proteins that are already fairly close to the native state will not translocate but can refold in the chamber where they were trapped. Several experimental results are compatible with this scenario, and in the case of the experiments of Martin and Hartl, intra chaperonin translocation could explain why under physiological crowding conditions the chaperonin does not release the substrate protein.  相似文献   
98.
99.
Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML2 (L: monodeprotonated ligand corresponding to 2-acetyl-γ-butyrolactone thiosemicarbazone, HL1, and 2-furancarbaldehyde thiosemicarbazone, HL2) and also complexes with general composition MCl2(HL2) were synthesized (except [NiCl2(HL2)] and [Co(L2)2]). The interaction of CuCl2 with HL2 gave [CuCl(HL2)], a copper(I) complex. The ligands and metal complexes were characterized by IR, 1H and 13C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L2)2] · 2dmso was determined and a trans-square planar coordination of the two κ2-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as κ2-N,S chelates, except in the case of [Co(L1)2] in which HL1 is tridentate κ3-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL2 were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L1)2], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.  相似文献   
100.
A series of 25 compounds, some of which previously were described as inhibitors of human liver microsomal oxidosqualene cyclase (OSC), were tested as inhibitors of Saccharomyces cerevisiae, Trypanosoma cruzi, Pneumocystis carinii and Arabidopsis thaliana OSCs expressed in an OSC-defective strain of S. cerevisiae. The screening identified three derivatives particularly promising for the development of novel anti-Trypanosoma agents and eight derivatives for the development of novel anti-Pneumocystis agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号