首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2185篇
  免费   214篇
  2022年   8篇
  2021年   35篇
  2020年   22篇
  2019年   28篇
  2018年   47篇
  2017年   48篇
  2016年   51篇
  2015年   72篇
  2014年   98篇
  2013年   159篇
  2012年   230篇
  2011年   236篇
  2010年   210篇
  2009年   129篇
  2008年   122篇
  2007年   69篇
  2006年   53篇
  2005年   52篇
  2004年   52篇
  2003年   50篇
  2002年   51篇
  2001年   39篇
  2000年   38篇
  1999年   37篇
  1998年   26篇
  1997年   22篇
  1996年   14篇
  1995年   13篇
  1994年   10篇
  1993年   17篇
  1992年   28篇
  1991年   21篇
  1990年   35篇
  1989年   29篇
  1988年   24篇
  1987年   16篇
  1986年   21篇
  1985年   16篇
  1984年   22篇
  1983年   16篇
  1982年   12篇
  1980年   10篇
  1979年   13篇
  1978年   11篇
  1977年   8篇
  1976年   10篇
  1975年   8篇
  1974年   8篇
  1973年   10篇
  1971年   9篇
排序方式: 共有2399条查询结果,搜索用时 643 毫秒
101.
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin‐signalling pathways in modulating plant–microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter‐species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant–microbe interactions.  相似文献   
102.
The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non‐mycorrhizal plants. The interaction of such non‐host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non‐mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual‐compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non‐host/AMF interactions and the biological basis of AM incompatibility.  相似文献   
103.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   
104.
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen‐fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2‐fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH‐sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.  相似文献   
105.
106.
The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na+] and [K+] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na+‐selective class I‐HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single‐nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near‐isogenic lines (NILs): 157‐14 (double homozygote for the cheesmaniae alleles) and 157‐17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157‐14 in comparison with 157‐17. A significant difference between NILs was also found for [K+] and the [Na+]/[K+] ratio in leaf and stem but not for [Na+] arising a disagreement with the corresponding RIL population. Their association with leaf [Na+] and salt tolerance in tomato is also discussed.  相似文献   
107.
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1‐3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1‐3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1‐3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.  相似文献   
108.
P2Y2 receptor expression is increased in intestinal epithelial cells (IECs) during inflammatory bowel diseases (IBDs). In this context, P2Y2 stimulates PGE2 release by IECs, suggesting a role in wound healing. For this study, we have used the non‐cancerous IEC‐6 cell line. IEC‐6 cell migration was determined using Boyden chambers and the single‐edged razor blade model of wounding. The receptor was activated using ATP, UTP, or 2‐thioUTP. Pharmacological inhibitors, a blocking peptide, a neutralizing antibody and interfering RNAs were used to characterize the signaling events. Focal adhesions and microtubule (MT) dynamics were determined by immunofluorescence using anti‐vinculin and anti‐acetylated‐α‐tubulin antibodies, respectively. In vivo, the dextran sodium sulfate mouse model of colitis was used to characterize the effects of P2Y2 agonist 2‐thioUTP on remission. We showed that P2Y2 increased cell migration and wound closure by recruiting Go protein with the cooperation of integrin αv. Following P2Y2 activation, we demonstrated that GSK3β activity was inhibited in response to Akt activation. This leads to MT stabilization and increased number of focal adhesions. In vivo, P2Y2 activation stimulates remission, as illustrated by a reduction in the disease activity index values and histological scores as compared to control mice. These findings highlight a novel function for this receptor in IECs. They also illustrate that P2Y receptors could be targeted for the development of innovative therapies for the treatment of IBDs. J. Cell. Physiol. 228: 99–109, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
109.
With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two‐thirds of villi. These data suggest a different role for this receptor in IECs. Using the non‐cancerous IEC‐6 cells and differentiated Caco‐2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7‐induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7‐dependent Glut2 internalization involved the calcium‐independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption. J. Cell. Physiol. 228: 120–129, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号