首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
排序方式: 共有44条查询结果,搜索用时 187 毫秒
31.
The effect of three systemic fungicides, tridemorph, fenpropimorph and fenarimol, on growth and aflatoxin production by Aspergillus parasiticus was studied in a chemically defined medium. Each compound inhibited growth and at the same time gave increased information of aflatoxin. Fenarimol, which is considered to be an inhibitor of cytochrome P450, not only affects total aflatoxin production but may also alter the ratio of aflatoxin B1 to G1 in the culture filtrate.  相似文献   
32.
Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.  相似文献   
33.
34.
The high mobility group (HMG) proteins of the HMGB family are architectural factors in eukaryotic chromatin, which are involved in the regulation of various DNA-dependent processes. We have examined the post-translational modifications of five HMGB proteins from maize suspension cultured cells, revealing that HMGB1 and HMGB2/3, but not HMGB4 and HMGB5, are phosphorylated by protein kinase CK2. The phosphorylation sites have been mapped to the acidic C-terminal domains by analysis of tryptic peptides derived from HMGB1 and HMGB2/3 using nanospray ion trap mass spectrometry. In native HMGB1, Ser(149) is constitutively phosphorylated, whereas Ser(133) and Ser(136) are differentially phosphorylated. The functional significance of the CK2-mediated phosphorylation of HMGB proteins was analyzed by circular dichroism measurements showing that the phosphorylation increases the thermal stability of the HMGB proteins. Electrophoretic mobility shift assays demonstrate that the phosphorylation reduces the affinity of the HMGB proteins for linear DNA. The specific recognition of DNA minicircles is not affected by the phosphorylation, but a different pattern of protein-DNA complexes is formed. Collectively, these findings show that phosphorylation of residues within the acidic C-terminal domain of the HMGB proteins can modulate protein stability and the DNA binding properties of the HMGB proteins.  相似文献   
35.
It is well known that ultraviolet (UV) radiation may reduce or even abolish the biological activity of proteins and enzymes. UV light, as a component of sunlight, is illuminating all light-exposed parts of living organisms, partly composed of proteins and enzymes. Although a considerable amount of empirical evidence for UV damage has been compiled, no deeper understanding of this important phenomenon has yet emerged. The present paper presents a detailed analysis of a classical example of UV-induced changes in three-dimensional structure and activity of a model enzyme, cutinase from Fusarium solani pisi. The effect of illumination duration and power has been investigated. A photon-induced mechanism responsible for structural and functional changes is proposed. Tryptophan excitation energy disrupts a neighboring disulphide bridge, which in turn leads to altered biological activity and stability. The loss of the disulphide bridge has a pronounced effect on the fluorescence quantum yield, which has been monitored as a function of illumination power. A general theoretical model for slow two-state chemical exchange is formulated, which allows for calculation of both the mean number of photons involved in the process and the ratio between the quantum yields of the two states. It is clear from the present data that the likelihood for UV damage of proteins is directly proportional to the intensity of the UV radiation. Consistent with the loss of the disulphide bridge, a complex pH-dependent change in the fluorescence lifetimes is observed. Earlier studies in this laboratory indicate that proteins are prone to such UV-induced radiation damage because tryptophan residues typically are located as next spatial neighbors to disulphide bridges. We believe that these observations may have far-reaching implications for protein stability and for assessing the true risks involved in increasing UV radiation loads on living organisms.  相似文献   
36.
Here we present a study of lipolytic activity of lipases from Fusarium solani pisi (cutinase), Rhizomucor miehei, Pseudomonas cepacia, and Humicola lanuginosa. Their activities toward triolein provide clear evidence for considerable enzymatic activity under acidic conditions. The activity was followed using Fourier transform infrared attenuated total reflection (FTIR-ATR) and nuclear magnetic resonance (NMR). Using these approaches, all the lipases that were studied exhibited lipolytic activity down to pH 4. The common model for the catalytic activity of the F. solani pisi cutinase, and lipases in general, requires the deprotonation of the active site histidine. Measurements using (13)C NMR spectroscopy showed a pK(a) value in the absence of substrate that is not consistent with the detected acid activity. We propose a novel model for the electrostatics in the active site of cutinase that could explain the observed acidic activity. The active site is essentially covered with the lipid surface during catalysis, thus preventing chemical communication between the active site and the bulk solvent. We propose that the classical definition of pH in bulk solution is not applicable to the active site environment of a lipase when the active site is inaccessible to solvent. In small restricted volumes, the pH must be quantized, and since much of the biological world is dependent on compartmentalization of processes in small volumes, it becomes relevant to investigate when this mechanism comes into play. We have made a quantitative assessment of how large the restricted volume can be and still lead to quantization of pH.  相似文献   
37.
We present a calorimetric investigation of stabilisation of hen egg-white lysozyme with sorbitol in the pH range 3.8-10.5. Differential scanning calorimetry and steady-state fluorescence were used to determine the denaturation temperatures of lysozyme as a function of sorbitol concentration. The fluorescence data were collected in the presence of 2M urea to lower the melting point of the protein to an observable range of the instrument. The effect of sorbitol on the activation energy of unfolding was investigated by scanrate studies. The effect of sorbitol lysozyme interaction was investigated using isothermal titration calorimetry. The titration experiments were performed with folded as well as unfolded lysozyme to investigate in more detail the nature of the interaction. The data obtained in those experiments show a remarkable stabilisation effect of sorbitol. We observed a 4.0 degrees C increase in the Tm for 1 M sorbitol in the pH range 3.8-8.5 by scanning calorimetry. The effect increases dramatically at pH 9.5 where we observe a 9.5 degrees C stabilisation. An increase in the sorbitol concentration to 2 M stabilises lysozyme by 11.3-13.4 degrees C in the pH range 9.5-10.5. In the absence of urea, no significant effects of sorbitol were observed on the activation energy for unfolding for lysozyme at pH 4.5. This indicates together with the results from the titration experiments that sorbitol may stabilise the folded form of lysozyme by destabilising the unfolded form of lysozyme. At pH values at and above lysozyme's pI (approximately 9.3), the unfolding of the protein is accompanied with a substantial amount of self-aggregation seen in the calorimetry experiments in the ratio of DeltaH(cal)/DeltaH(vH). In the presence of sorbitol, the self-aggregation was counterbalanced by higher sorbitol concentrations. These results strongly suggest a negative influence of sorbitol on the unfolded form of lysozyme and thereby stabilising the native form.  相似文献   
38.
How do lipases and esterases work: the electrostatic contribution   总被引:4,自引:0,他引:4  
This work explores the role of one of the factors explaining lipase/esterase activity: the contribution of electrostatic interactions to lipase/esterase activity. The electrostatic potential distribution on the molecular surface of an enzyme as a function of pH determines, to a large extent, the enzyme's pH activity profile. Other important factors include the presence and distribution of polar and hydrophobic residues in the active cleft. We have mapped the electrostatic potential distribution as a function of pH on the molecular surface of nine lipases/esterases for which the 3D structure is experimentally known. A comparison of these potential maps at different pH values with the corresponding pH-activity profile, pH optimum or pH range where the activity displayed by the enzyme is maximum, has revealed a considerable correlation. A negative potential in the active site appears correlated with maximum activity towards triglycerides, which has prompted us to propose a model for product release ('The electrostatic catapult model') after cleavage of an ester bond. At the same time as the bottom of the active site cleft becomes negatively charged, other nearby regions also titrate and become negatively charged when pH becomes more alkaline, for some of the studied lipases. If such lipases also show phospholipase activity (such as guinea pig lipase-related proteins 2 chimera) we raise the hypothesis that such other titratable regions after becoming negatively charged might stabilise the positive charge present in the polar head of phospholipids, such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. The distribution of polar, weak polar and non-polar residues on the molecular surface of each studied lipase, in particular the active site region, was compared for all the lipases studied. The combination of graphical visualisation of the electrostatic potential maps and the polarity maps combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for lipolytic activity.  相似文献   
39.
The optimisation of enzymes for particular purposes or conditions remains an important target in virtually all protein engineering endeavours. Here, we present a successful strategy for altering the pH-optimum of the triglyceride lipase cutinase from Fusarium solani pisi. The computed electrostatic pH-dependent potentials in the active site environment are correlated with the experimentally observed enzymatic activities. At pH-optimum a distinct negative potential is present in all the lipases and esterases that we studied so far. This has prompted us to propose the "The Electrostatic Catapult Model" as a model for product release after cleavage of the ester bond. The origin of the negative potential is associated with the titration status of specific residues in the vicinity of the active site cleft. In the case of cutinase, the role of Glu44 was systematically investigated by mutations into Ala and Lys. Also, the neighbouring Thr45 was mutated into Proline, with the aim of shifting the spatial location of Glu44. All the charge mutants displayed altered titration behaviour of active site electrostatic potentials. Typically, the substitution of the residue Glu44 pushes the onset of the active site negative potential towards more alkaline conditions. We, therefore, predicted more alkaline pH optima, and this was indeed the experimentally observed. Finally, it was found that the pH-dependent computed Coulombic energy displayed a strong correlation with the observed melting temperatures of native cutinase.  相似文献   
40.
The fungal lipolytic enzyme cutinase, incorporated into sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles has been investigated using dynamic light scattering. The reversed micelles form spontaneously when water is added to a solution of sodium bis-(2ethylhexyl) sulfosuccinate in isooctane. When an enzyme is previously dissolved in the water before its addition to the organic phase, the enzyme will be incorporated into the micelles. Enzyme encapsulation in reversed micelles can be advantageous namely to the conversion of water insoluble substrates and to carry out synthesis reactions. However protein unfolding occurs in several systems as for cutinase in sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles. Dynamic light scattering measurements of sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles with and without cutinase were taken at different water to surfactant ratios. The results indicate that cutinase was attached to the micellar wall and that might cause cutinase unfolding. The interactions between cutinase and the bis-(2ethylhexyl) sulfosuccinate interface are probably the driving force for cutinase unfolding at room temperature. Twenty-four hours after encapsulation, when cutinase is unfolded, a bimodal distribution was clearly observed. The radii of reversed micelles with unfolded cutinase were determined and found to be considerable larger than the radii of the empty reversed micelles. The majority of the reversed micelles were empty (90-96% of mass) and the remainder (4-10%) containing unfolded cutinase were larger by 26-89 A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号