首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2599篇
  免费   203篇
  国内免费   1篇
  2022年   12篇
  2021年   44篇
  2020年   24篇
  2019年   34篇
  2018年   42篇
  2017年   33篇
  2016年   60篇
  2015年   150篇
  2014年   122篇
  2013年   215篇
  2012年   210篇
  2011年   222篇
  2010年   118篇
  2009年   117篇
  2008年   153篇
  2007年   207篇
  2006年   159篇
  2005年   137篇
  2004年   127篇
  2003年   127篇
  2002年   112篇
  2001年   19篇
  2000年   12篇
  1999年   29篇
  1998年   32篇
  1997年   24篇
  1996年   21篇
  1995年   16篇
  1994年   23篇
  1993年   18篇
  1992年   7篇
  1991年   12篇
  1990年   9篇
  1989年   4篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
  1943年   3篇
  1937年   3篇
排序方式: 共有2803条查询结果,搜索用时 734 毫秒
151.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   
152.
A coordinated effort combining bioinformatic tools with high-throughput cell-based screening assays was implemented to identify novel factors involved in T-cell biology. We generated a unique library of cDNAs encoding predicted secreted and transmembrane domain-containing proteins generated by analyzing the Human Genome Sciences cDNA database with a combination of two algorithms that predict signal peptides. Supernatants from mammalian cells transiently transfected with this library were incubated with primary T cells and T-cell lines in several high-throughput assays. Here we describe the discovery of a T cell factor, TIP (T cell immunomodulatory protein), which does not show any homology to proteins with known function. Treatment of primary human and murine T cells with TIP in vitro resulted in the secretion of IFN-gamma, TNF-alpha, and IL-10, whereas in vivo TIP had a protective effect in a mouse acute graft-versus-host disease (GVHD) model. Therefore, combining functional genomics with high-throughput cell-based screening is a valuable and efficient approach to identifying immunomodulatory activities for novel proteins.  相似文献   
153.
During influenza virus infection, viral ribonucleoproteins (vRNPs) are replicated in the nucleus and must be exported to the cytoplasm before assembling into mature viral particles. Nuclear export is mediated by the cellular protein Crm1 and putatively by the viral protein NEP/NS2. Proteolytic cleavage of NEP defines an N-terminal domain which mediates RanGTP-dependent binding to Crm1 and a C-terminal domain which binds to the viral matrix protein M1. The 2.6 A crystal structure of the C-terminal domain reveals an amphipathic helical hairpin which dimerizes as a four-helix bundle. The NEP-M1 interaction involves two critical epitopes: an exposed tryptophan (Trp78) surrounded by a cluster of glutamate residues on NEP, and the basic nuclear localization signal (NLS) of M1. Implications for vRNP export are discussed.  相似文献   
154.
155.
156.
Enterococcus faecium clinical isolate BM4524, resistant to vancomycin and susceptible to teicoplanin, harboured a chromosomal vanB cluster, including the vanSB/vanRB two-component system regulatory genes. Enterococcus faecium strain BM4525, isolated two weeks later from the same patient, was resistant to high levels of both glycopeptides. The ddl gene of BM4525 had a 2 bp insertion leading to an impaired d-alanine:d-alanine ligase. Sequencing of the vanB operon in BM4525 also revealed an 18 bp deletion in the vanSB gene designated vanSBDelta. The resulting six amino acid deletion partially overlapped the G2 ATP-binding domain of the VanSBDelta histidine kinase leading to constitutive expression of the resistance genes. Sequence analysis indicated that the deletion occurred between two tandemly arranged heptanucleotide direct repeats, separated by 11 base-pairs. The VanSB, VanSBDelta and VanRB proteins were overproduced in Escherichia coli and purified. In vitro autophosphorylation of the VanSB and VanSBDelta histidine kinases and phosphotransfer to the VanRB response regulator did not differ significantly. However, VanSBDelta was deficient in VanRB phosphatase activity leading to accumulation of phosphorylated VanRB. Increased glycopeptide resistance in E. faecium BM4525 was therefore a result of the lack of production of d-alanyl-d-alanine ending pentapeptide and to constitutive synthesis of d-alanyl-d-lactate terminating peptidoglycan precursors, following loss of d-alanine:d-alanine ligase and of VanSB phosphatase activity respectively. We suggest that the heptanucleotide direct repeat in vanSB may favour the appearance of high level constitutively expressed vancomycin resistance through a 'slippage' type of genetic rearrangement in VanB-type strains.  相似文献   
157.
A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.  相似文献   
158.
In order to analyze dexamethasone effects on peripheral blood lymphocyte proliferation, we defined various experimental conditions: dexamethasone introduced (i) at the time of phytohemagglutinin stimulation, (ii) 48 h after the beginning of phytohemagglutinin stimulation, and (iii) on unstimulated lymphocytes. In stimulated lymphocytes, we observed an early G1 accumulation (P< 0.005), a delayed increase in the duration of S-phase (P< 0.03), and a consequent increase in cell-cycle duration. The expression of several cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) was modified. Cyclin D3, CDK4, and CDK6 involved in G1-phase control were significantly decreased under dexamethasone treatment whatever the level of stimulation of lymphocytes (stimulated or unstimulated PBL). Cyclin E and CDK2, acting in G1/S-phase transition and S-phase regulation, decreased in stimulated lymphocytes before any modification of S-phase (P< 0.002). The expression of CKIs, mainly of p27Kip1, appeared to vary with the degree of cell stimulation: a decrease was observed on treated unstimulated lymphocytes, while p27Kip1increased in dexamethasone-treated cells during stimulation. Our results indicate sequential modifications of the cell-cycle regulation by dexamethasone starting with an action on G1 followed by S-phase control modifications. The protein analysis pinpoints the major complexes concerned: CDK4 and CDK6/cyclin D are mainly involved in G1-phase modifications, while CDK2 and its partner, cyclin E, might be specifically involved in the lengthening of S-phase. The variations observed for p27Kip1might amplify the functional effects of dexamethasone on kinasic complexes.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号