首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   46篇
  2022年   9篇
  2021年   20篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2017年   20篇
  2016年   23篇
  2015年   41篇
  2014年   45篇
  2013年   66篇
  2012年   45篇
  2011年   61篇
  2010年   36篇
  2009年   28篇
  2008年   44篇
  2007年   44篇
  2006年   31篇
  2005年   37篇
  2004年   32篇
  2003年   31篇
  2002年   41篇
  2001年   7篇
  1999年   5篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   9篇
  1994年   7篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1966年   1篇
  1964年   1篇
  1963年   2篇
  1962年   3篇
  1959年   1篇
  1951年   2篇
  1941年   1篇
  1940年   1篇
排序方式: 共有794条查询结果,搜索用时 31 毫秒
701.
Light availability is an important modulator of seedling growth and plant–herbivore dynamics. Logging increases light levels in forests, potentially altering herbivore–plant interactions that drive seedling establishment. We conducted a transplant experiment to evaluate how logging and herbivory affect seedling growth and survival in three shade‐tolerant tree species, at paired canopy gap and understory sites in logged forest and an adjacent unlogged area in central Amazonia (Brazil). Seedlings were either left exposed to naturally occurring insect herbivores or protected from insects by a fine netting structure. We measured the herbivore damage and growth rate of seedlings after 18 mo. In general, logged areas received more light than unlogged sites. Growth and herbivory rates were positively influenced by light, and herbivory was also influenced positively by logging. In gaps, increased growth mitigated foliar damage. Logging resulted in a loss of foliar tissue due to increased herbivory. Herbivory rates were higher in the understory of logged sites than in that of unlogged understory sites, but growth was similar in these areas. Thus, the understory of logged areas provided the least favorable sites for shade‐tolerant tree regeneration, due to higher herbivory rates. The effect of logging on biotic interactions can extend beyond the gaps it creates into untouched understory sites. To our knowledge, this is the first time such a pattern has been observed, highlighting the importance of evaluating the impact of logging on biotic interactions.  相似文献   
702.
Recent studies have shown that probucol (PB), a hipocholesterolemic agent with antioxidant and anti-inflammatory properties, presents neuroprotective properties. On the other hand, adverse effects have limited PB’s clinical application. Thus, the search for PB derivatives with no or less adverse effects has been a topic of research. In this study, we present a novel organoselenium PB derivative (RC513) and investigate its potential protective activity in an in vitro experimental model of oxidative toxicity induced by tert-butyl hydroperoxide (tBuOOH) in HT22 neuronal cells, as well as exploit potential protective mechanisms. tBuOOH exposure caused a significant decrease in the cell viability, which was preceded by (i) increased reactive species generation and (ii) decreased mitochondrial maximum oxygen consumption rate. RC513 pretreatment (48 h) significantly prevented the tBuOOH-induced decrease of cell viability, RS generation, and mitochondrial dysfunction. Of note, RC513 significantly increased glutathione peroxidase (GPx) activity and mRNA expression of GPx1, a key enzyme involved in peroxide detoxification. The use of mercaptosuccinic acid, an inhibitor of GPx, significantly decreased the protective activity of RC513 against tBuOOH-induced cytotoxicity in HT22 cells, highlighting the importance of GPx upregulation in the observed protection. In summary, the results showed a significant protective activity of a novel PB derivative against tBuOOH-induced oxidative stress and mitochondrial dysfunction, which was related to the upregulation of GPx. Our results point to RC513 as a promising neuroprotective molecule, even though studies concerning potential beneficial effects and safety aspects of RC513 under in vivo conditions are well warranted.  相似文献   
703.
Organisms store fatty acids in triacylglycerols in the form of lipid droplets, or hydrolyze triacylglycerols in response to energetic demands via activation of lipolytic or storage pathways. These pathways are complex sets of sequential reactions that are finely regulated in different cell types. Here we present a high spatial and temporal resolution-based method for the quantification of the turnover of fatty acids into triglycerides in live cells without introducing sample preparation artifacts.We performed confocal spectral imaging of intracellular micropolarity in cultured insulin secreting beta cells to detect micropolarity variations as they occur in time and at different pixels of microscope images. Acquired data are then analyzed in the framework of the spectral phasors technique.The method furnishes a metabolic parameter, which quantitatively assesses fatty acids - triacylglycerols turnover and the activation of lipolysis and storage pathways. Moreover, it provides a polarity profile, which represents the contribution of hyperpolar, polar and non-polar classes of lipids. These three different classes can be visualized on the image at a submicrometer resolution, revealing the spatial localization of lipids in cells under physiological and pathological settings.This new method allows for a fine-tuned, real-time visualization of the turnover of fatty acids into triglycerides in live cells with submicrometric resolution. It also detects imbalances between lipid storage and usage, which may lead to metabolic disorders within living cells and organisms.  相似文献   
704.
Capsule Sex-biased dispersal and an age-dependent effect in survival rate accounted for the pattern of first settlement and reproduction in a newly reintroduced Osprey population.

Aims We estimate the survival of translocated individuals, describe juvenile movements and evaluate the success of first breeding events to document the re-establishment of an Osprey breeding population.

Methods Between 2006 and 2010, 32 fledgling Ospreys were reintroduced via hacking techniques in Maremma Regional Park, Italy. We evaluated the effects of age on survival through multistate capture-mark-recapture analyses. Movements were investigated by radiotracking and using records of resightings.

Results Survival was high for juveniles after the release (0.87), markedly decreased during the first winter (0.26), and improved again in subsequent years (annual apparent survival of 0.69 for immatures and 0.93 for adults). Mean distance covered in initial dispersal was greater for females (246.2?km) than for males (38.7?km).

Conclusion Our results provided information on dispersal and survival rate of reintroduced Ospreys in a Mediterranean area. Despite low apparent survival in the first year, the high survival rates found in immatures and adults suggested favourable conditions for this new population. The study of demographic parameters is important for calibrating management actions aimed at the establishment of a self-sustaining Osprey population.  相似文献   
705.
We report a 38-year-old woman presenting with febrile neutropenia, acute myeloid leukemia (AML) and invasive mucormycosis. Bone marrow aspirate was characteristic of AML minimally differentiated (WHO classification 2008). Flow cytometric immunophenotyping analysis showed blasts positive for CD7, CD33, CD34, CD71, CD117, HLA-DR, MPO, and TdT, with normal karyotype (46, XX), and the absence of the FLT3-ITD and NPM1 mutations. The patient’s management included chemotherapy with cytarabine and idarubicin, and treatment with liposomal amphotericin B, deferasirox, hyperbaric oxygen therapy, and antibiotics. Nowadays, she is in complete hematological remission, and CT images of control are normal. Invasive mucormycosis is an uncommon and severe condition, which involves diagnosis and treatment challenges. Clinical features and predisposing factors should be highlighted in order to enhance the suspicion index, contributing to early diagnosis and disease control. Our aim is to report classical features of this uncommon condition and to emphasize usual management challenges.  相似文献   
706.

Background

To evaluate whether co-administration of R/S-α-lipoic acid can prevent the development of oxidative stress and metabolic changes induced by a fructose-rich diet (F).

Methods

We assessed glycemia in the fasting state and during an oral glucose tolerance test, triglyceridemia and insulinemia in rats fed with standard diet (control) and fructose without or with R/S-α-lipoic acid. Insulin resistance and hepatic insulin sensitivity were also calculated. In liver, we measured reduced glutathione, protein carbonyl groups, antioxidant capacity by ABTS assay, antioxidant enzymes (catalase and superoxide dismutase 1 and 2), uncoupling protein 2, PPARδ and PPARγ protein expressions, SREBP-1c, fatty acid synthase and glycerol-3-phosphate acyltransferase-1 gene expression, and glucokinase activity.

Results

R/S-α-lipoic acid co-administration to F-fed rats a) prevented hyperinsulinemia, hypertriglyceridemia and insulin resistance, b) improved hepatic insulin sensitivity and glucose tolerance, c) decreased liver oxidative stress and increased antioxidant capacity and antioxidant enzymes expression, d) decreased uncoupling protein 2 and PPARδ protein expression and increased PPARγ levels, e) restored the basal gene expression of PPARδ, SREBP-1c and the lipogenic genes fatty acid synthase and glycerol-3-phosphate acyltransferase, and f) decreased the fructose-mediated enhancement of glucokinase activity.

Conclusions

Our results suggest that fructose-induced oxidative stress is an early phenomenon associated with compensatory hepatic metabolic mechanisms, and that treatment with an antioxidant prevented the development of such changes.

General significance

This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced oxidative stress and to develop effective strategies to prevent and treat, at early stages, obesity and type 2 diabetes mellitus.  相似文献   
707.
Congenital hyperinsulinism (CHI) is a genetic disorder characterized by profound hypoglycemia related to an inappropriate insulin secretion. It is a heterogeneous disease classified into two major subgroups: “channelopathies” due to defects in ATP-sensitive potassium channel, encoded by ABCC8 and KCNJ11 genes, and “metabolopathies” caused by mutation of several genes (GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) and involved in different metabolic pathways. To elucidate the genetic etiology of CHI in the Italian population, we conducted an extensive sequencing analysis of the CHI-related genes in a large cohort of 36 patients: Twenty-nine suffering from classic hyperinsulinism (HI) and seven from hyperinsulinism–hyperammonemia (HI/HA). Seventeen mutations have been found in fifteen HI patients and five mutations in five HI/HA patients. Our data confirm the major role of ATP-sensitive potassium channel in the pathogenesis of Italian cases (~ 70%) while the remaining percentage should be attributed to other. A better knowledge of molecular basis of CHI would lead to improve strategies for genetic screening and prenatal diagnosis. Moreover, genetic analysis might also help to distinguish the two histopathological forms of CHI, which would lead to a clear improvement in the treatment and in genetic counseling.  相似文献   
708.
709.
710.
Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号