首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   70篇
  国内免费   1篇
  2024年   1篇
  2023年   8篇
  2022年   2篇
  2021年   23篇
  2020年   20篇
  2019年   17篇
  2018年   34篇
  2017年   25篇
  2016年   27篇
  2015年   65篇
  2014年   55篇
  2013年   74篇
  2012年   91篇
  2011年   79篇
  2010年   61篇
  2009年   43篇
  2008年   65篇
  2007年   64篇
  2006年   44篇
  2005年   40篇
  2004年   36篇
  2003年   36篇
  2002年   20篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有1016条查询结果,搜索用时 187 毫秒
51.
Fomes sclerodermeus produces manganese peroxidase (MnP) and laccase as part of its ligninolytic system. A Doehlert experimental design was applied in order to find the optimum conditions for MnP and laccase production. The factors studied were Cu2+, Mn2+ and asparagine. The present model and data analysis allowed us not only to define optimal media for production of both laccase and MnP, but also to show the combined effects between the factors. MnP was strongly influenced by Mn2+, which acts as an inducer. Under these conditions Cu2+ negatively affected MnP activity. At 13 days of growth 0.75 U ml–1 were produced in the optimized culture medium supplemented with 1 mM MnSO4 and 4 g l–1 asparagine. The laccase titer under optimized conditions reached maximum values at 16 days of growth: 13.5 U ml–1 in the presence of 0.2 mM CuSO4, 0.4 mM MnSO4 and 6 g l–1 asparagine. Mn2+ promoted production of both enzymes. There were important interactions among the nutrients evaluated, the most significant being those between Cu2+ and asparagine.  相似文献   
52.
53.
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes.  相似文献   
54.
Hyperglycemia induces overproduction of superoxide and it is related to diabetic complications. In this study, we analyzed the antioxidant enzymatic defense and the lipid peroxidation of rat salivary glands in six different periods of diabetic condition. Ninety‐six rats were divided into 12 groups: C7/14/21/28/45/60 (non‐diabetic animals) and D7/14/21/28/45/60 (diabetic animals). Diabetes was induced by streptozotocin and the rats were euthanized after 7, 14, 21, 28, 45, or 60 days. Their parotid (PA) and submandibular (SM) glands were removed soon after the sacrifice and the total protein and malondialdehyde (MDA) concentrations, as well as, the superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were determined. Twenty‐one days after the diabetes induction, the SM glands showed an increase in SOD, CAT, and GPx activities, as well as, MDA concentration. Concerning the PA glands, an increase in the CAT activity and MDA content was observed throughout the observation period. The results suggest that diabetes can cause alterations on the salivary glands and that PA and SM glands react differently when exposed to diabetes condition. However, no impairment of antioxidant system was observed in the group whose diabetic condition had been induced 60 days earlier, herein named 60‐day group. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
55.
In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.  相似文献   
56.
Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNFα) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNFα and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo.  相似文献   
57.
58.

Objective

Evidence is limited on whether Integrated Community Case Management (iCCM) improves treatment coverage of the top causes of childhood mortality (acute respiratory illnesses (ARI), diarrhoea and malaria). The coverage impact of iCCM in Central Uganda was evaluated.

Methods

Between July 2010 and December 2012 a pre-post quasi-experimental study in eight districts with iCCM was conducted; 3 districts without iCCM served as controls. A two-stage household cluster survey at baseline (n = 1036 and 1042) and end line (n = 3890 and 3844) was done in the intervention and comparison groups respectively. Changes in treatment coverage and timeliness were assessed using difference in differences analysis (DID). Mortality impact was modelled using the Lives Saved Tool.

Findings

5,586 Village Health Team members delivered 1,907,746 treatments to children under age five. Use of oral rehydration solution (ORS) and zinc treatment of diarrhoea increased in the intervention area, while there was a decrease in the comparison area (DID = 22.9, p = 0.001). Due to national stock-outs of amoxicillin, there was a decrease in antibiotic treatment for ARI in both areas; however, the decrease was significantly greater in the comparison area (DID = 5.18; p<0.001). There was a greater increase in Artemisinin Combination Therapy treatment for fever in the intervention areas than in the comparison area but this was not significant (DID = 1.57, p = 0.105). In the intervention area, timeliness of treatments for fever and ARI increased significantly higher in the intervention area than in the comparison area (DID = 2.12, p = 0.029 and 7.95, p<0.001, respectively). An estimated 106 lives were saved in the intervention area while 611 lives were lost in the comparison area.

Conclusion

iCCM significantly increased treatment coverage for diarrhoea and fever, mitigated the effect of national stock outs of amoxicillin on ARI treatment, improved timeliness of treatments for fever and ARI and saved lives.  相似文献   
59.
Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug.  相似文献   
60.

Background

Myasthenia gravis (MG) is an autoimmune disease in which 90% of patients have autoantibodies against the muscle nicotinic acetylcholine receptor (AChR), while autoantibodies to muscle-specific tyrosine kinase (MuSK) have been detected in half (5%) of the remaining 10%. Recently, the low-density lipoprotein receptor-related protein 4 (LRP4), identified as the agrin receptor, has been recognized as a third autoimmune target in a significant portion of the double sero-negative (dSN) myasthenic individuals, with variable frequency depending on different methods and origin countries of the tested population. There is also convincing experimental evidence that anti-LRP4 autoantibodies may cause MG.

Methods

The aim of this study was to test the presence and diagnostic significance of anti-LRP4 autoantibodies in an Italian population of 101 myasthenic patients (55 dSN, 23 AChR positive and 23 MuSK positive), 45 healthy blood donors and 40 patients with other neurological diseases as controls. All sera were analyzed by a cell-based antigen assay employing LRP4-transfected HEK293T cells, along with a flow cytofluorimetric detection system.

Results

We found a 14.5% (8/55) frequency of positivity in the dSN-MG group and a 13% frequency of co-occurrence (3/23) in both AChR and MuSK positive patients; moreover, we report a younger female prevalence with a mild form of disease in LRP4-positive dSN-MG individuals.

Conclusion

Our data confirm LRP4 as a new autoimmune target, supporting the value of including anti-LRP4 antibodies in further studies on Myasthenia gravis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号