首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   40篇
  357篇
  2023年   2篇
  2022年   4篇
  2021年   14篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2017年   8篇
  2016年   7篇
  2015年   16篇
  2014年   9篇
  2013年   15篇
  2012年   18篇
  2011年   19篇
  2010年   19篇
  2009年   6篇
  2008年   17篇
  2007年   11篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  2000年   18篇
  1999年   13篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1987年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1882年   2篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
351.
352.
The IGF axis and programmed cell death.   总被引:11,自引:0,他引:11  
Insulin-like growth factors (IGF) are mitogenic peptides that have been implicated as positive regulators of cellular proliferation. In recent years, several studies have suggested an additional role for the IGF axis in the regulation of apoptosis. Signalling through the IGF receptor has been shown to have a potent survival function and protect cells from a variety of apoptotic stimuli. The actions of IGF are regulated by a family of high-affinity IGF binding proteins (IGFBP), which sequester the IGF from the IGF receptor. However, there is some evidence that one of these binding proteins, IGFBP-3, may have its own pro-apoptotic effects that are independent of its ability to modulate IGF bioavailability. In addition, it has been suggested that the tumour suppressor p53, a crucial mediator of apoptosis in response to cellular stress, may elicit several of its apoptotic effects through manipulation of components of the IGF axis. This review summarizes what is currently known about the role of the IGF system in the regulation of apoptosis, highlighting its implications in the context of tumorigenesis.  相似文献   
353.
354.
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.  相似文献   
355.
356.
Summary Na+, K+-ATPase is the best-known member of a family of membrane transport ATPases sharing a number of structural features. Methods recently developed for Na+, K+-ATPase localization may, therefore, be modifiable for use in studies of the distributions of related enzymes. Our experiences in the use of monophosphate and triphosphate substrate methods for localization of the gastric proton pump ATPase (H+, K+-ATPase) are described and the prospects for localizing other related enzymes by similar techniques are discussed.  相似文献   
357.
Industrial biotechnology employs the controlled use of microorganisms for the production of synthetic chemicals or simple biomass that can further be used in a diverse array of applications that span the pharmaceutical, chemical and nutraceutical industries. Recent advances in metagenomics and in the incorporation of entire biosynthetic pathways into Saccharomyces cerevisiae have greatly expanded both the fitness and the repertoire of biochemicals that can be synthesized from this popular microorganism. Further, the availability of the S. cerevisiae entire genome sequence allows the application of systems biology approaches for improving its enormous biosynthetic potential. In this review, we will describe some of the efforts on using S. cerevisiae as a cell factory for the biosynthesis of high-value natural products that belong to the families of isoprenoids, flavonoids and long chain polyunsaturated fatty acids. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号