首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  2022年   2篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
41.
Diabetic bladder dysfunction is a common complication of diabetes mellitus (DM) with poorly understood natural history. This study examined the temporal changes in bladder function 3, 9, 12, and 20 wk after induction of DM by streptozotocin (STZ) in male C57BL/6 mice compared with that in age-matched diabetic mice treated with insulin, 5% sucrose-induced diuretic mice, and sham-treated control mice. Conscious cystometrograms of mice were examined in addition to the measurements of micturition cycle. Diabetes resulted in decreased body weight. Bladder weight, urine output, bladder capacity, and compliance increased in the DM and diuretic groups. Peak voiding pressure (PVP) increased initially in both DM and diuretic mice. However, in DM mice, PVP dropped dramatically at and after 12 wk. Similar changes in the capacity, compliance, and emptying ability of the bladder were seen during the first 9 wk of the diabetes or diuresis, whereas significant decline in the emptying ability of the bladder was only seen in diabetes after 12 wk of disease in mice. Long-term insulin replacement effectively reversed most changes in bladder function. These results suggest that the transition from a compensated to a decompensated bladder dysfunction occurs 9-12 wk after induction of DM in mice by STZ.  相似文献   
42.
The aim of the present study was to examine the association of high blood lactate levels, induced with a maximal cycling or with an intravenous infusion, with spinal cord excitability. The study was carried out on 17 male athletes; all the subjects performed a maximal cycling test on a mechanically braked cycloergometer, while 6 of them were submitted to the intravenous infusion of a lactate solution (3?mg/kg in 1?min). Before the exercise or the injection, also at the end as well as 5 and 10?min after the conclusion, venous blood lactate was measured and excitability of the spinal α-motoneurons was evaluated by using the H reflex technique. In both experimental conditions, it has been observed that an exhaustive exercise is associated with a strong increase of blood lactate (but not of blood glucose) and with a significant reduction of spinal excitability. Since a similar augment of blood lactate induced by an intravenous infusion, in subjects not performing any exercise, is not associated with significant changes of spinal excitability, it can be concluded that the increase of blood lactate levels during a maximal exercise is not per se capable of modifying the excitability of spinal α-motoneurons.  相似文献   
43.
Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development.  相似文献   
44.
We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and gammaH2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G(1)/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G(2) resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G(1) cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G(1)-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4> or =AT>Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when cells are devoid of endogenous damage.  相似文献   
45.
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability.  相似文献   
46.
Aim of the present study was the investigation of the genotoxicity of amino-alpha-carboline (AalphaC) in human derived cells and of its organ-specific effects in laboratory rodents. This heterocyclic amine (HA) is contained in fried meat and fish in higher concentrations than most other cooked food mutagens. In the present experiments, AalphaC caused dose-dependent induction of micronuclei in the human derived hepatoma cell line HepG2 at concentrations > or =50 microM. In contrast, no significant effects were seen in Hep3B, another human hepatoma cell line, which may be explained by the concurrent lower activity of sulfotransferase (SULT), an enzyme playing a key role in the activation of AalphaC. A positive result was also obtained in the single cell gel electrophoresis (SCGE) assay in peripheral human lymphocytes, but the effect was only significant at the highest concentration (1000 microM). In Fischer F344 rats and ICR mice, the liver was the main target organ for the formation of DNA adducts (at > or =50 mg/kg bw), and in lungs and colon substantially lower levels were detected. Identical organ specificity as in the DNA adduct measurements was seen in SCGE assays with rats, whereas in mice the most pronounced induction of DNA migration was observed in the colon. Comparison of our results with data from earlier experiments indicate that the genotoxic potency of AalphaC is equal to that of other HAs, which are contained in human foods in much smaller amounts. Therefore, our findings can be taken as an indication that the human health risk caused by exposure to AalphaC is higher than that of other HAs that are formed during the cooking of meat and fish.  相似文献   
47.
The nuclear enzyme, poly(ADP-ribose) synthetase is involved in the repair of damaged DNA. We report here the results obtained with 3-aminobenzamide (3AB), an inhibitor of this enzyme, on induced biological effects. 3AB increases the frequency of chromosomal aberrations induced by DMS, EMS, ENU, bleomycin and CldUrd. The magnitude of the effect is dependent on the type of chemical used, the combinations with DMS and EMS being the most potent ones. No potentiation was observed after treatment of cells with MMC. Mutation frequencies were determined on the HPRT locus and showed that 3AB did not increase the frequency of gene mutations induced by EMS, ENU and CldUrd. Cell-cycle progression is affected when cells are grown in medium containing CldUrd and 3AB, primarily when the inhibitor is present during the second cell cycle when substituted DNA becomes replicated. The extent of the effect depends on the amount of analogue incorporated and is independent of the presence of the analogue in the medium during the second cell cycle. Analysis of chromosomal aberrations in delayed G2 cells with the aid of the premature chromosome-condensation technique revealed numerous aberrations after incorporation of CldUrd and treatment with 3AB.  相似文献   
48.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   
49.
We have utilized an in vivo drug metabolism technique (i.e. injecting the chemical into rat and isolating plasma with metabolites from blood) for detecting the genotoxicity of indirectly acting cyclophosphamide and its directly acting metabolite phosphoramide mustard in cultures of human peripheral blood lymphocytes of normal individuals, Fanconi's anaemia (FA) and aplastic anaemia (AA) patients, wild-type Chinese hamster ovary cells (CHO) and its DNA repair-deficient mutant 43-3B cells. In addition, the influence of dietary carrot on the clastogenic activity of these 2 chemicals in all the different cell types was studied. The genotoxicity was assessed by the ability of the metabolites of these agents to induce sister-chromatid exchanges in the treated cells. A dose-dependent increase in the frequencies of sister-chromatid exchanges was observed in all cell strains following treatment with activated metabolites of cyclophosphamide or phosphoramide mustard. The sensitivity of lymphocytes from normal donors, FA and AA patients to these 2 chemicals was similar. In CHO cell lines the induced frequency of sister-chromatid exchanges was slightly higher after treatment with the metabolites of cyclophosphamide than with phosphoramide mustard. The mutant 43-3B cells responded with higher frequencies of SCEs when compared to the wild-type CHO cells, about 1.5-2-fold, at low doses. Pretreating of rats with fresh carrot juice effectively inhibited the increase in the frequencies of sister-chromatid exchanges induced by cyclophosphamide in wild-type and mutant CHO cells (P less than 0.01), and to a lesser extent in human lymphocytes (p less than 0.05). In contrast, no inhibitory effect was observed in any of these cell types in combination of dietary carrot for direct acting phosphoramide mustard on the frequency of induced sister-chromatid exchanges. The possibility that dietary carrot exerts its antimutagenic effect by affecting the processes of enzymatic activation of cyclophosphamide is discussed.  相似文献   
50.
The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号