首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  2022年   2篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
排序方式: 共有67条查询结果,搜索用时 920 毫秒
11.
Despite great advances in the field of vaccination, there are still needs for novel and effective vaccines because still no effective vaccines have been produced for some diseases such as malaria, acquired immune deficiency syndrome (AIDS), and tuberculosis. Furthermore, many of the existing vaccines have disadvantages such as failure to stimulate completely the immune system, in vivo instability, high toxicity, the need for cold chain, and multiple administrations. Nanotechnology has been raised as a powerful tool for solving these problems in this regard. Generally, nanovaccines are a new generation of vaccines using nanoparticles (NPs) as carriers and/or adjuvants. Due to the similar scale (size) between the NPs and pathogens, the immune system can be stimulated well, resulting in triggered cellular and humoral immunity responses. Other benefits of the nanovaccines include their better stability in blood flow to increase the shelf life in blood, enhanced immune system stimulation, no need for booster doses, no need to maintain the cold chain, and ability to create active targeting. In addition, nanovaccines have raised the hope to treat diseases such as rheumatoid arthritis, AIDS, malaria, and chronic autoimmune, and so forth.  相似文献   
12.
A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks ∼5–12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia. Within syncytia bell shaped nuclear number increases binomially up to 16 or 32 nuclei; clusters of syncytia are regularly dispersed in organ anlagen. Syncytial bell shaped nuclei demonstrate two forms of symmetrical amitoses, facing or “kissing” bells and “stacking” bells resembling separation of two paper cups. Remarkably, DNA increase and nuclear fission occur coordinately. Importantly, syncytial bell shaped nuclei undergo asymmetrical amitoses creating organ specific ensembles of up to eight distinct closed nuclear forms, a characteristic required of a stem cell lineage. Closed nuclei emerging from bell shaped nuclei are eukaryotic as demonstrated by their subsequent increases by extra-syncytial mitoses populating the parenchyma of growing anlagen. From 9–14 weeks syncytia fragment forming single cells with bell shaped nuclei that continue to display both symmetrical and asymmetrical amitoses. These forms persist in the juvenile period and are specifically observed in bases of colonic crypts. Metakaryotic forms are found in organogenesis of humans, rats, mice and the plant Arabidopsis indicating an evolutionary origin prior to the divergence of plants and animals.  相似文献   
13.
Graphene quantum dots (GQDs) was synthesized using a simple, rapid and affordable method and decorated with selenium at different molar ratios for the first time to obtain an efficient sample for use in photodynamic therapy. Surface modification of GQDs was carried out using polyethylene glycol (PEG) for conjugation with protoporphyrin IX (PpIX). Synthesized GQDs (Se: 0.3%) at 180°C had an emission spectrum that fairly coincided with the absorption profile of PpIX. A relative decrease of about 62.48% in the emission intensity of anthracene was recorded under illumination with UVC light in the presence of GQDs (Se: 0.3%) and the reduction for clung GQDs (Se: 0.3%) and PpIX during 90 min was about 70.68%. Singlet oxygen (1O2) generation was examined using a chemical method that showed significant enhancement in decomposition rate constant in clung GQDs–PEG–PpIX compared with GQDs and PpIX alone. Afterglow over 600 s showed that GQDs (Se: 0.3%) could be effective for near skin and even deep tumours.  相似文献   
14.
15.
16.
The complementation effect of wild-type CHO-K1 and xrs mutants after fusion, as judged by the frequencies of X-ray-induced G1 and G2 premature chromosome condensation (PCC), was studied. For induction of PCC, X-irradiated interphase cells (G1 and G2) were fused immediately with untreated mitotic cells of the same cell line or with mitotic cells of another line. The frequencies of breaks in G1-PCC, or breaks and chromatid exchanges in G2-PCC were determined and the latter parameter was compared with the frequency of chromosomal aberrations in mitotic cells following G2 irradiation. CHO-K1 cells were capable of complementing the X-ray sensitivity of both xrs 5 and xrs 6 cells. However, full restoration of the repair defect in xrs cells could never be accomplished. The mutants failed to complement each other. In CHO-K1 cells, the incidence of chromosomal aberrations was significantly higher in G2-PCC (2.5-fold) than that observed in mitotic cells at 2.5 h after irradiation. The ratio of the induced frequency of aberrations in G2-PCC to that in mitotic cells was correlated with the degree of repair of DNA double-strand breaks (dsb) and reached almost 1 in xrs 5 cells indicating no repair. In addition the data indicated that, during the period of recovery of CHO-K1 cells, X-ray-induced breaks decreased but exchanges remained at the same level. In contrast, due to a deficiency in rejoining of dsb in xrs mutants, breaks remained open for a long period of time, allowing the formation of additional chromatid exchanges during recovery time.  相似文献   
17.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   
18.
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).  相似文献   
19.
The cell killing and induction of sister-chromatid exchanges (SCEs) by X-rays and short-wave ultraviolet (UV) irradiation in combination with inhibitors of DNA repair, 3-aminobenzamide (3AB), cytosine arabinoside (ara-C) or aphidicolin (APC) were studied in wild-type CHO-K1 and two X-ray-sensitive mutants, xrs 5 and xrs 6 cells. The spontaneous frequency of SCEs was similar in the mutants and the wild-type CHO-K1 cells (8.4-10.3 SCEs/cell). Though X-rays are known to be poor inducers of SCEs, a dose-dependent increase in the frequency of SCEs in xrs 6 cells (doubling at 150 rad) was found in comparison to a small increase in xrs 5 and no increase in wild-type CHO-K1 cells. 3AB, an inhibitor of poly(ADP-ribose) synthetase increased the spontaneous frequency of SCEs in all the cell types. 3AB did not potentiate the X-ray-induced frequency of SCEs in any of the cell lines. Ara-C, an inhibitor of DNA polymerase alpha, increased the frequency of SCEs in all the cell lines. In combined treatment with X-rays, ara-C had no synergistic effect in xrs 5 and xrs 6 cells, but the frequency of SCEs increased in X-irradiated wild-type CHO-K1 cells post-treated with ara-C. For the induced frequency of SCEs, CHO-K1 cells treated with X-rays plus ara-C behaved like xrs 6 cells treated with X-rays alone, suggesting a possible defect in DNA base damage repair in xrs 6 cells, in addition to the known defective repair of DNA double-strand breaks (DSBs). Survival experiments revealed higher sensitivity of xrs 5 and xrs 6 mutant cells to the cell killing effect of X-rays in S-phase when compared to wild-type CHO-K1 cells. The mutants responded with lesser sensitivity to cell killing effect of ara-C and APC than CHO-K1 cells, the relative sensitivity to ara-C or APC being CHO-K1 greater than xrs 5 greater than xrs 6 cells. When X-irradiation was coupled with ara-C, the results obtained for survival were similar to those of the SCE test, i.e., unlike wild-type CHO-K1, no synergistic effect was observed in xrs 5 or xrs 6 cells. After UV-irradiation, the frequency of SCEs increased similarly in wild-type CHO-K1 and xrs 6 cells, but xrs 5 cells responded with lower frequency of SCEs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
20.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号