首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   16篇
  国内免费   1篇
  2020年   1篇
  2019年   6篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   11篇
  2011年   16篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   10篇
  2006年   3篇
  2005年   14篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   17篇
  1998年   7篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1970年   3篇
  1969年   2篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
31.
On the basis of the theory of specific long-range interaction between long molecules, an approach has been elaborated for «fast reading» of nucleotide sequences in one DNA molecule. First, a stretching force is applied to the molecule that causes its unwinding from B-form to S-form. Then, the molecule is placed in the stretched state on a support. After this, the electrostatic potential is estimated in a space along the DNA filament. The information obtained is sufficient for deducing the nucleotide sequence. Another approach to the «reading» of information reduces to measurement of the deformation of filament elements induced by the electric field from the electrode that stretches the filament by an alternating current applied.  相似文献   
32.
The RAD 51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a significant role in both mitotic and meiotic homologous recombination. Here, we demonstrate that short-term silencing of the Rad51 gene by specific small interfering RNA (siRNA) that inhibits cell proliferation and reduces the viability of most cells. Cells with suppressed expression of Rad51 gene have altered cell cycles and accumulate in the S and G2 phases. Our findings show that the disruption of homologous recombination leads to cell death. However, some cells, e.g., MCF-7 cells, are insensitive to the suppression of Rad51 gene expression.  相似文献   
33.
A stimulating effect of sunlight transformed by a photoluminescent polymer film on the abundance dynamics and fermentation and respiration of indigenous microflora in oil-contaminated soils was investigated. Polymer film doped with photoluminophores based on inorganic Eu-complexes and common glasshouse film was used as a cover material for oil-contaminated soils at experimental and control sites. The application of photoluminescent film has been reported to stimulate a hundredfold growth of the microflora population, with the soil respiration intensity and catalase activity being increased by a factor of 2.5–3, respectively. The extents of biodegradation of petroleum hydrocarbons within 60 days were up to 70 and 30% of the overall background pollution level for the experimental and control site, respectively. Residual hydrocarbons extracted from samples of the contaminated soils were analyzed by infrared spectroscopy to show the appearance of additional absorption bands at 3350, 1600, and 1710 cm?1, thus indicating the formation of metabolites during enzymatic oxidation of oil. Chromatographic data corroborated the occurrence of intense oxidation. The hydrocarbon biodegradation factor increases sixfold when the photoluminescent films are used.  相似文献   
34.
Relationships between viruses and their human host are traditionally described from the point of view taking into consideration hosts as victims of viral aggression, which results in infectious diseases. However, these relations are in fact two-sided and involve modifications of both the virus and host genomes. Mutations that accumulate in the populations of viruses and hosts may provide them advantages such as the ability to overcome defense barriers of host cells or to create more efficient barriers to deal with the attack of the viral agent. One of the most common ways of reinforcing anti-viral barriers is the horizontal transfer of viral genes into the host genome. Within the host genome, these genes may be modified and extensively expressed to compete with viral copies and inhibit the synthesis of their products or modulate their functions in other ways. This review summarizes the available data on the horizontal gene transfer between viral and human genomes and discusses related problems.  相似文献   
35.
36.

Key message

This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication.

Abstract

The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today’s crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
  相似文献   
37.
This review discusses the structure and properties of the isolated components of troponin, their interaction, and the mechanisms of regulation of contractile activity of skeletal and cardiac muscle. Data on the structure of troponin C in crystals and in solution are presented. The Ca2+-induced conformational changes of troponin C structure are described. The structure of troponin I is analyzed and its interaction with other components of actin filaments is discussed. Data on phosphorylation of troponin I by various protein kinases are presented. The role of troponin I phosphorylation in the regulation of contractile activity of the heart is analyzed. The structural properties of troponin T and its interaction with other components of thin filaments are described. Data on the phosphorylation of troponin T are presented and the effect of troponin T phosphorylation on contractile activity of different muscles is discussed. Modern models of the functioning of troponin are presented and analyzed.  相似文献   
38.
39.
Transposable elements often accumulate in nonrecombining regions, such as Y chromosomes. Contrary to this trend, a new Silene retrotransposon described here, has spread recently all over the genome of plant Silene latifolia, except its Y chromosome. This coincided with the latest steps of sex chromosome evolution in this species.  相似文献   
40.
A small cluster of dioecious species in the plant genus Silene has evolved chromosomal sex determination and sex chromosomes relatively recently, within the last 10 million years (MY). Five dioecious Silene species (section Elisanthe) are very closely related (1–2 MY of divergence) and it was previously thought that all five have similar sex chromosomes. Here we demonstrate that in one of these species, Silene diclinis, the sex chromosomes have been significantly rearranged, resulting in the formation of neo-sex chromosomes. Fluorescence in situ hybridization with genic and repetitive probes revealed that in S. diclinis a reciprocal translocation has occurred between the ancestral Y chromosome and an autosome, resulting in chromosomes designated Y1 and Y2. Both Y1 and Y2 chromosomes are male specific. Y1 pairs with the X chromosome and with the autosome (the neo-X), which cosegregates with X. Y2 pairs only with the neo-X, forming a chain X-Y1-neo-X-Y2 in male meiosis. Despite very recent formation of the neo-sex chromosomes in S. diclinis, they are present in all surveyed individuals throughout the species range. Evolution of neo-sex chromosomes may be the cause of partial reproductive isolation of this species and could have been the isolating mechanism that drove speciation of S. diclinis.PAIRING of homologous chromosomes during meiosis, in the majority of diploid plants and animals, leads to the formation of bivalents at first metaphase and subsequently the correct segregation of the chromosomes. Chromosomal translocations that produce multivalents usually result in unbalanced segregation, which consequently affects fertility. However, chain or ring configurations appear to be stably inherited in some species. An extreme example is found in the plant genus Oenothera, where many species display a ring involving all 14 chromosomes (Cleland 1972). In animals these configurations may include sex chromosomes, resulting in the formation of multiple X and Y chromosomes. For example, the monotreme platypus possesses five X and five Y chromosomes that form a chain of alternating X and Y chromosomes in male meiosis (Bick and Sharman 1975; Gruetzner et al. 2006). Such chains are formed due to several interchromosomal translocation events, including sex chromosome–autosome translocations (Gruetzner et al. 2006). Since sex chromosomes are rare in plants, examples of plant sex-linked chromosome multiples have been reported on only a few occasions. A chain of four X and five Y has been identified in an East African mistletoe Viscum fischeri (Wiens and Barlow 1975) and a chain of two X and two Y has been found in Humulus lupulus ssp. cordifolius (Shephard et al. 2000). Trivalent formation comprising Y1 X Y2 has been observed both in H. japonicus (Shephard et al. 2000) and in a number of dioecious species in the genus Rumex (Cunado et al. 2007; Navajas-Perez et al. 2009). Here we report that the plant species Silene diclinis has multiple sex chromosomes that form a chain of four during meiosis metaphase I.S. diclinis is a member of a small group of dioecious species (having separate male and female plants) in section Elisanthe in the plant genus Silene (Caryophyllaceae). The other members of this group are S. latifolia, S. dioica, S. heuffelii, and S. marizii (Prentice 1978). The presence of large heteromorphic sex chromosomes in S. latifolia and S. dioica has been known for many years (Westergaard 1958). Due to the ease of cytogenetic identification of the sex chromosomes, the clear morphological difference between the sexes and the short generation time, S. latifolia was used in early genetic research concerning sex determination in plants. The male was shown to be the heterogametic sex (XY) with the larger Y chromosome having a decisive role in sex determination (Westergaard 1958). Since then, S. latifolia has become a species of choice for studies in plant genetics, ecology, and evolution (Bernasconi et al. 2009). It is particularly useful for studies of sex chromosome evolution because the sex chromosomes in Silene are of relatively recent origin compared to those of mammals (Charlesworth 2002; Ming and Moore 2007; Marais et al. 2008).Experimental crosses involving all five dioecious species in Silene section Elisanthe in various pairwise combinations have produced viable hybrids and, although some combinations were less successful than others, the formation of these hybrids suggests a close relationship within this group (Prentice 1978). This close relationship is also illustrated by DNA sequence comparisons that show that interspecific silent divergence between these species does not exceed 2%, which is comparable to intraspecific polymorphism in S. latifolia (Ironside and Filatov 2005). S. diclinis is a rare and restricted endemic, found only in Southern Valencia, Spain in an area smaller than 18 × 9 km (Prentice 1976; Montesinos et al. 2006). Of the other four Elisanthe species, only S. latifolia occurs in this region, and experimental crosses between these two species are the least successful (Prentice 1978). Hybrids between S. latifolia and S. dioica occur naturally in regions where their populations coincide (Baker 1948) but no natural hybrids of S. diclinis and S. latifolia have been reported.Cytogenetic analysis of S. diclinis has been limited. Examination of mitotic metaphase spreads in root tip squash preparations from adult male and female plants indicated that the male had one X and one Y chromosome. Both chromosomes were large but the difference between them was slight (van Nigtevecht and Prentice 1985). Regular pairing of chromosomes with 12 bivalents at metaphase I in pollen mother cells has been reported (Morisset and Bozman 1969). However, these observations were made without the benefit of a marker for the Y chromosome. Recently, sequences with homology to an Ogre retrotransposon have been isolated from S. latifolia and used as probes in fluorescence in situ hybridization (FISH) experiments on mitotic (Cermak et al. 2008) and both mitotic and meiotic (Filatov et al. 2009) chromosome spreads. The pattern of hybridization showed that these sequences are widespread over the X chromosome and all of the autosomes but are mainly confined to a small section at the pairing region of the Y chromosome in S. latifolia. Therefore, these probes “paint” all the chromosomes apart from the Y, providing a “negative paint” for the Y chromosome. By using one of these probes (clone 4.2) on meiotic spreads of S. dioica and S. marizii, we confirmed that these species have sex chromosomes similar to those of S. latifolia (Filatov et al. 2009). The X and Y formed a rod bivalent and the Y chromosome was larger than both the X and autosomes.In this article we report our FISH experiments with S. diclinis using the negative paint probe together with probes containing S. latifolia sex-linked gene sequences. We demonstrate that S. diclinis males have two Y chromosomes that differ in the distribution of the paint signal and these gene sequences. In meiotic metaphase I, one Y pairs with the X and an autosome while the second Y pairs with the other arm of this autosome, forming a chain of four chromosomes. We suggest that an autosome–Y reciprocal translocation was involved in the evolution of neo-sex chromosomes in this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号