首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   21篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   20篇
  2014年   8篇
  2013年   20篇
  2012年   16篇
  2011年   28篇
  2010年   10篇
  2009年   9篇
  2008年   25篇
  2007年   17篇
  2006年   23篇
  2005年   14篇
  2004年   16篇
  2003年   14篇
  2002年   14篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1992年   7篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1967年   1篇
  1966年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
51.
Genetic factors are believed to account for 30-50% of the risk for cocaine and heroin addiction. Dynorphin peptides, derived from the prodynorphin (PDYN) precursor, bind to opioid receptors, preferentially the kappa-opioid receptor, and may mediate the aversive effects of drugs of abuse. Dynorphin peptides produce place aversion in animals and produce dysphoria in humans. Cocaine and heroin have both been shown to increase expression of PDYN in brain regions relevant for drug reward and use. Polymorphisms in PDYN are therefore hypothesized to increase risk for addiction to drugs of abuse. In this study, 3 polymorphisms in PDYN (rs1022563, rs910080 and rs1997794) were genotyped in opioid-addicted [248 African Americans (AAs) and 1040 European Americans (EAs)], cocaine-addicted (1248 AAs and 336 EAs) and control individuals (674 AAs and 656 EAs). Sex-specific analyses were also performed as a previous study identified PDYN polymorphisms to be more significantly associated with female opioid addicts. We found rs1022563 to be significantly associated with opioid addiction in EAs [P = 0.03, odds ratio (OR) = 1.31; false discovery rate (FDR) corrected q-value]; however, when we performed female-specific association analyses, the OR increased from 1.31 to 1.51. Increased ORs were observed for rs910080 and rs199774 in female opioid addicts also in EAs. No statistically significant associations were observed with cocaine or opioid addiction in AAs. These data show that polymorphisms in PDYN are associated with opioid addiction in EAs and provide further evidence that these risk variants may be more relevant in females.  相似文献   
52.
53.
Mitochondrial deoxynucleoside triphosphates are formed and regulated by a network of anabolic and catabolic enzymes present both in mitochondria and the cytosol. Genetic deficiencies for enzymes of the network cause mitochondrial DNA depletion and disease. We investigate by isotope flow experiments the interrelation between mitochondrial and cytosolic deoxynucleotide pools as well as the contributions of the individual enzymes of the network to their maintenance. To study specifically the synthesis of dGTP used for the synthesis of mitochondrial and nuclear DNA, we labeled hamster CHO cells or human fibroblasts with [(3)H]deoxyguanosine during growth and quiescence and after inhibition with aphidicolin or hydroxyurea. At time intervals we determined the labeling of deoxyguanosine nucleotides and DNA and the turnover of dGTP from its specific radioactivity in the separated mitochondrial and cytosolic pools. In both cycling and quiescent cells, the import of deoxynucleotides formed by cytosolic ribonucleotide reductase accounted for most of the synthesis of mitochondrial dGTP, with minor contributions by cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. A dynamic isotopic equilibrium arose rapidly from the shuttling of deoxynucleotides between mitochondria and cytosol, incorporation of dGTP into DNA, and degradation of dGMP. Inhibition of DNA synthesis by aphidicolin marginally affected the equilibrium. Inhibition of DNA synthesis by blockage of ribonucleotide reduction with hydroxyurea instead disturbed the equilibrium and led to accumulation of labeled dGTP in the cytosol. The turnover of dGTP decreased, suggesting a close connection between ribonucleotide reduction and pool degradation.  相似文献   
54.
Previous quantitative trait loci (QTL) mapping studies document that the distal region of mouse Chromosome (Chr) 1 contains a gene(s) that is in large part responsible for the difference in seizure susceptibility between C57BL/6 (B6) (relatively seizure-resistant) and DBA/2 (D2) (relatively seizure-sensitive) mice. We now confirm this seizure-related QTL (Szs1) using reciprocal, interval-specific congenic strains and map it to a 6.6-Mb segment between Pbx1 and D1Mit150. Haplotype conservation between strains within this segment suggests that Szs1 may be localized more precisely to a 4.1-Mb critical interval between Fcgr3 and D1Mit150. We compared the coding region sequences of candidate genes between B6 and D2 mice using RT-PCR, amplification from genomic DNA, and database searching and discovered 12 brain-expressed genes with SNPs that predict a protein amino acid variation. Of these, the most compelling seizure susceptibility candidate is Kcnj10. A survey of the Kcnj10 SNP among other inbred mouse strains revealed a significant effect on seizure sensitivity such that most strains possessing a haplotype containing the B6 variant of Kcnj10 have higher seizure thresholds than those strains possessing the D2 variant. The unique role of inward-rectifying potassium ion channels in membrane physiology coupled with previous strong association between ion channel gene mutations and seizure phenotypes puts even greater focus on Kcnj10 in the present model. In summary, we confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped it to a finely delimited region. The critical interval contains several candidate genes, one of which, Kcnj10, exhibits a potentially important polymorphism with regard to fundamental aspects of seizure susceptibility.  相似文献   
55.
56.
57.
58.
Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundwater at the Superfund site were cis-1,2-dichloroethene (cis-1,2-DCE) and 1,1,1-trichloroethane (1,1,1-TCA). The two mixtures; one a mixture of sand and peat, the other a mixture of sand, peat and Bion Soil, a product derived from agricultural wastes; were selected from ten possible mixtures based on the results of hydraulic and geotechnical testing. The sand and peat mixture had an average hydraulic conductivity of 4.95×10−4 cm/s with a critical flow of 39.5 gpm/acre (368 l/min/ha) without fluidization of the bed. The sand, peat and Bion Soil mixture had an average hydraulic conductivity of 3.02×10−4 cm/s with a critical flow of 36.8 gpm/acre (344 l/min/ha) without fluidization of the bed. Retardation coefficients ranged from 1 to 7.3 for target VOCs with higher coefficients observed in the mixture containing the Bion Soil. Consistently higher spatial and temporal first-order removal rate constants were observed in the sand, peat and Bion Soil mixture (cis-1,2-DCE, 0.84±0.36/day; 1,1,1-TCA, 6.52±3.12/day) than in the sand and peat mixture (cis-1,2-DCE, 0.37±0.13/day; 1,1,1-TCA, 1.48±0.42/day). Results from anaerobic microcosm studies confirmed that biodegradation was occurring in the columns and that the sand, peat and Bion Soil mixture had higher degradation rate than the sand and peat mixture. Vinyl chloride (VC) was identified as a ‘design’ contaminant since it is a proven carcinogen and had the lowest removal rate constant for both substrate mixtures. Effective wetland bed depths for VC removal of 900 and 210 cm will be required for peat and sand alone and sand, peat and Bion Soil mixtures, respectively.  相似文献   
59.
Three new flavonoids: 5-hydroxy-7-(3-methyl-2,3-epoxybutoxy)flavanone,5-hydroxy-3,8-dimethoxy 7-(3-methyl-2,3-epoxybutoxy)flavone and 4′-hydroxy-5-methoxy-7-(3-methyl-2,3-epoxybutoxy)flavone were isolated and identified from the aerial parts of Achyrocline flaccida. Tamarixetin, gnaphaliin, isognaphaliin, 5,7,8-trihydroxy-3-methoxyflavone, chrysoeriol, galangin 3-methyl ether, naringenin 5-methyl ether, caffeic acid, chlorogenic acid and isochlorogenic acid were also isolated.  相似文献   
60.
Infected epithelial cells, which act as a first barrier against pathogens, seldom undergo apoptosis. Rather, infected epithelial cells undergo a slow cell death that displays hallmarks of necrosis. Here, we demonstrate that rapid intracellular lysis of Shigella flexneri, provoked by either the use of a diaminopimelic acid auxotroph mutant or treatment of infected cells with antibiotics of the beta-lactam family, resulted in a massive and rapid induction of apoptotic cell death. This intracellular bacteriolysis-mediated apoptotic death (IBAD) was characterized by the specific involvement of the mitochondrial-dependent cytochrome c/Apaf-1 axis that resulted in the activation of caspases-3, -6 and -9. Importantly, Bcl-2 family members and the NF-kappaB pathway seemed to be critical modulators of IBAD. Finally, we identified that IBAD was also triggered by Salmonella enterica serovar Typhimurium but not by the Gram-positive bacteria, Listeria monocytogenes. Together, our results demonstrate that, contrary to previous findings, epithelial cells are intrinsically able to mount an efficient apoptotic cell death response following infection. Indeed, apoptosis in normal circumstances is masked by powerful anti-apoptotic mechanisms, which are overcome in IBAD. Our results also uncover an unexpected consequence of the treatment of infected cells with certain classes of antibiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号