首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   13篇
  2015年   3篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1990年   1篇
  1989年   2篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
  1960年   2篇
  1959年   1篇
  1944年   1篇
  1942年   1篇
  1941年   1篇
  1935年   1篇
  1934年   1篇
  1927年   2篇
  1923年   1篇
  1922年   4篇
  1921年   3篇
  1919年   2篇
  1904年   1篇
  1899年   1篇
排序方式: 共有165条查询结果,搜索用时 22 毫秒
131.
Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.  相似文献   
132.
133.

Background  

Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity).  相似文献   
134.
135.
136.
Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the "proton shuttle" E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.  相似文献   
137.
138.
The mountains of southern California receive some of the highest rates of nitrogen (N) deposition in the world (approximately 40 kg ha(-1) year(-1)). These high rates of deposition have translated into consistently high levels of nitrate (NO3-) in some streams of the San Bernardino Mountains. However, not all streams are exhibiting these high levels of NO3-. Perennial streams have high NO3- concentrations (approximately 200 micromoles l(-1)) while ephemeral streams do not (approximately 20 micromoles l(-1)). This difference points to groundwater as the source of the NO3- observed in streams. Furthermore, the evidence indicates a differential impact of N deposition on terrestrial and aquatic systems in Mediterranean climates, with aquatic systems being impacted more quickly. The primary reason for this difference involves the asynchrony between the time that atmospheric deposition occurs (summer), the time period of maximum soil NO3- availability and leaching (winter), and the time of maximum plant N demand (spring). Our results indicate that semiarid Mediterranean climate systems behave differently from more humid systems in that, because of this asynchrony, aquatic systems may not be indicative of changes in terrestrial ecosystem response. These differences lead us to the conclusion that the extrapolation of impacts from humid to Mediterranean climates is problematic and the concept of N saturation may need to be revisited for semiarid and seasonally dry systems.  相似文献   
139.
Atmospheric deposition of nitrogen (N) in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3) and particulate ammonium (NH4+) from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx), nitric acid (HNO3), and particulate nitrate (NO3-) resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95%) of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3), drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.  相似文献   
140.
ObjectiveTo estimate the cost effectiveness of conventional versus intensive blood glucose control in patients with type 2 diabetes.DesignIncremental cost effectiveness analysis alongside randomised controlled trial.Setting23 UK hospital clinic based study centres.Participants3867 patients with newly diagnosed type 2 diabetes (mean age 53 years).InterventionsConventional (primarily diet) glucose control policy versus intensive control policy with a sulphonylurea or insulin.ResultsIntensive glucose control increased trial treatment costs by £695 (95% confidence interval £555 to £836) per patient but reduced the cost of complications by £957 (£233 to £1681) compared with conventional management. If standard practice visit patterns were assumed rather than trial conditions, the incremental cost of intensive management was £478 (−£275 to £1232) per patient. The within trial event-free time gained in the intensive group was 0.60 (0.12 to 1.10) years and the lifetime gain 1.14 (0.69 to 1.61) years. The incremental cost per event-free year gained was £1166 (costs and effects discounted at 6% a year) and £563 (costs discounted at 6% a year and effects not discounted).ConclusionsIntensive blood glucose control in patients with type 2 diabetes significantly increased treatment costs but substantially reduced the cost of complications and increased the time free of complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号