首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   84篇
  国内免费   66篇
  2024年   3篇
  2023年   18篇
  2022年   23篇
  2021年   51篇
  2020年   26篇
  2019年   43篇
  2018年   39篇
  2017年   32篇
  2016年   31篇
  2015年   51篇
  2014年   70篇
  2013年   59篇
  2012年   83篇
  2011年   70篇
  2010年   46篇
  2009年   36篇
  2008年   52篇
  2007年   51篇
  2006年   43篇
  2005年   34篇
  2004年   16篇
  2003年   20篇
  2002年   16篇
  2001年   12篇
  2000年   11篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   9篇
  1995年   7篇
  1994年   10篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有1018条查询结果,搜索用时 31 毫秒
101.
Despite the improvement of strategies against cancer therapy, the multidrug resistance (MDR)is the critical problem for successful cancer therapy. Recurrent cancers after initial treatment with chemotherapy are generally refractory to second treatments with these anticancer therapies. Therefore, it is necessary to elucidate the therapy-resistant mechanism for development of effective therapeutic modalities against tumors. Here we demonstrate a phase-specific chemotherapy resistance due to epidermal growth factor receptor (EGFR) in human breast cancer cells. Thymidine-induced G1-arrested cultures showed upregulated chemosensitivity, whereas S-phase arrested cells were more resistant to chemotherapeutic agents. Overexpression of EGFR promoted the MDR phenotypes in breast cancer cells via accelerating the G1/S phase transition, whereas depletion of EGFR exerted the opposite effects. Furthermore, CyclinD1, a protein related to cell cycle, was demonstrated to be involved in above EGFR-mediated effects since EGFR increased the expression of CyclinD1, and the specific RNA interference against CyclinD1 could primarily abolish the EGFR-induced MDR phenotypes. These data provide new insights into the mode by which MDR breast cancers evade cytoxic attacks from chemotherapeutic agents and also suggest a role for EGFR-CyclinD1 axis in this process.  相似文献   
102.
Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.  相似文献   
103.
The effects of osmolytes on the unfolding and refolding process of recombinant human brain-type creatine kinase (rHBCK) were comparatively, quantitatively studied in dilute solutions and macromolecular crowding systems (simulated by 100g/L polyethylene glycol 2000), respectively. The results showed that the osmolytes, including glycerol, sucrose, dimethylsulfoxide, mannitol, inositol, and xylitol, could both protect the rHBCK from denaturation induced by 0.8M GdnHCl and aid in the refolding of denatured-rHBCK in macromolecular crowding systems. When we examined the effects of sucrose and xylitol on the parameters of residual activity, reaction kinetics and intrinsic fluorescence of rHBCK during unfolding, it was found that the protecting effects of osmolytes in a macromolecular crowding system were more significant compared with those in a dilute solution, which resulted in more residual activities, protected the conformational changes and greatly decreased the rates of both the fast and slow tracks. Regarding the effects of glycerol, sucrose and mannitol on the denatured-rHBCK refolding parameters of refolding yield, reaction kinetics and aggregation, the results indicated that the osmolytes could alleviate the aggregation of rHBCK during refolding in both dilute solutions and macromolecular crowding systems, and the refolding yields and reaction rates under macromolecular crowding environment could be increased by the addition of osmolytes, though higher yields were obtained in the dilute solution. For further insight, osmolyte docking simulations and rHBCK denaturation were conducted successfully and confirmed our experimental results. The predictions based on the docking simulations suggested that the deactivation of guanidine may be blocked by osmolytes because they share common binding sites on rHBCK, and the higher number of interactions with rHBCK by osmolytes than guanidine may be one of the causes of rHBCK refolding. In brief, the additive effects of the exclusive volume effect from the macromolecular crowding system and the osmophobic effects from the osmolytes resulted in better performance of the osmolytes in a macromolecular crowding system, which also led to a better understanding of protein folding in the intracellular environment.  相似文献   
104.
105.
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.  相似文献   
106.
Novel indole-propionic acid derivatives were developed as sphingosine-1-phosphate (S1P) receptor agonists through a systematic SAR study. The optimized and S1P(3) selective S1P(1) agonist 9f induced peripheral blood lymphocyte reduction in vivo and has an excellent efficacy in mouse experimental autoimmune encephalomyelitis (EAE).  相似文献   
107.
108.
Maize rough dwarf disease (MRDD) is one of the most serious virus diseases of maize worldwide, and it causes great reduction of maize production. In China, the pathogen was shown to be rice black-streaked virus (RBSDV). Currently, MRDD has spread broadly and leads to significant loss in China. However, there has been little research devoted to this disease. Our aims were to identify the markers and loci underlying resistance to this virus disease. In this study, segregation populations were constructed from two maize elite lines '90110', which is highly resistant to MRDD and 'Ye478', which is highly susceptible to MRDD. The F(2) and BC(1) populations were used for bulk sergeant analysis (BSA) to identify resistance-related markers. One hundred and twenty F(7:9) RILs were used for quantitative trait loci (QTL) mapping through the experiment of multiple environments over 3 years. Natural occurrence and artificial inoculation were both used and combined to determine the phenotype of plants. Five QTL, qMRD2, qMRD6, qMRD7, qMRD8 and qMRD10 were measured in the experiments. The qMRD8 on chromosome 8 was proved to be one major QTL conferring resistance to RBSDV disease in almost all traits and environments, which explained 12.0-28.9 % of the phenotypic variance for disease severity in this present study.  相似文献   
109.
Zhang T  Luan JB  Qi JF  Huang CJ  Li M  Zhou XP  Liu SS 《Molecular ecology》2012,21(5):1294-1304
Plant-mediated interactions between herbivorous arthropods and pathogens transmitted by herbivores are important determinants of the population dynamics of both types of organisms in the field. The role of plant defence in mediating these types of tripartite interactions have been recognized but rarely examined especially at the physiological and molecular levels. Our previous work shows that a worldwide invasive whitefly can establish mutualism with the begomovirus Tomato yellow leaf curl China virus (TYLCCNV) via crop plants. Here, we show that TYLCCNV and betasatellite co-infection suppresses jasmonic acid defences in the plant. Impairing or enhancing defences mediated by jasmonic acid in the plant enhances or depresses the performance of the whitefly. We further demonstrate that the pathogenicity factor βC1 encoded in the betasatellite is responsible for the initiation of suppression on plant defences and contributes to the realization of the virus-vector mutualism. By integrating ecological, mechanistic and molecular approaches, our study reveals a major mechanism of the plant-mediated mutualism between a virus and its vector. As the test plant is an important economic crop, the results also have substantial implications for developing novel strategies for management of crop viruses and the insect vectors associated with them.  相似文献   
110.
Both drought and high salinity stresses are major abiotic factors that limit the yield of agricultural crops. Transgenic techniques have been regarded as effective ways to improve crops in their tolerance to these abiotic stresses. Functional characterization of genes is the prerequisite to identify candidates for such improvement. Here, we have investigated the biological functions of an Oryza sativa Ribosome-inactivating protein gene 18 (OSRIP18) by ectopically expressing this gene under the control of CaMV 35S promoter in the rice genome. We have generated 11 independent transgenic rice plants and all of them showed significantly increased tolerance to drought and high salinity stresses. Global gene expression changes by Microarray analysis showed that more than 100 probe sets were detected with up-regulated expression abundance while signals from only three probe sets were down-regulated after over-expression of OSRIP18. Most of them were not regulated by drought or high salinity stresses. Our data suggested that the increased tolerance to these abiotic stresses in transgenic plants might be due to up-regulation of some stress-dependent/independent genes and OSRIP18 may be potentially useful in further improving plant tolerance to various abiotic stresses by over-expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号