首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2678篇
  免费   217篇
  国内免费   1篇
  2024年   4篇
  2023年   19篇
  2022年   17篇
  2021年   102篇
  2020年   47篇
  2019年   73篇
  2018年   72篇
  2017年   69篇
  2016年   111篇
  2015年   179篇
  2014年   182篇
  2013年   209篇
  2012年   259篇
  2011年   201篇
  2010年   145篇
  2009年   120篇
  2008年   146篇
  2007年   144篇
  2006年   140篇
  2005年   124篇
  2004年   96篇
  2003年   87篇
  2002年   89篇
  2001年   16篇
  2000年   14篇
  1999年   18篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1991年   11篇
  1990年   7篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1969年   3篇
  1962年   4篇
排序方式: 共有2896条查询结果,搜索用时 15 毫秒
41.
A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.  相似文献   
42.
Mechanistic modeling of chromatography processes is one of the most promising techniques for the digitalization of biopharmaceutical process development. Possible applications of chromatography models range from in silico process optimization in early phase development to in silico root cause investigation during manufacturing. Nonetheless, the cumbersome and complex model calibration still decelerates the implementation of mechanistic modeling in industry. Therefore, the industry demands model calibration strategies that ensure adequate model certainty in a limited amount of time. This study introduces a directed and straightforward approach for the calibration of pH-dependent, multicomponent steric mass action (SMA) isotherm models for industrial applications. In the case investigated, the method was applied to a monoclonal antibody (mAb) polishing step including four protein species. The developed strategy combined well-established theories of preparative chromatography (e.g. Yamamoto method) and allowed a systematic reduction of unknown model parameters to 7 from initially 32. Model uncertainty was reduced by designing two representative calibration experiments for the inverse estimation of remaining model parameters. Dedicated experiments with aggregate-enriched load material led to a significant reduction of model uncertainty for the estimates of this low-concentrated product-related impurity. The model was validated beyond the operating ranges of the final unit operation, enabling its application to late-stage downstream process development. With the proposed model calibration strategy, a systematic experimental design is provided, calibration effort is strongly reduced, and local minima are avoided.  相似文献   
43.
BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.  相似文献   
44.
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.  相似文献   
45.
DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.  相似文献   
46.
47.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   
48.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   
49.
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.  相似文献   
50.

Pulsatile flow inside a moderately elastic circular conduit with a smooth expansion is studied as a model to understand the influence of wall elasticity in artery flow. The solution of the simultaneous fluid-wall evolution is evaluated by a perturbative method, where the zeroth order solution is represented by the flow in a rigid vessel; the first order correction gives the wall motion and induced flow modification without the need to solve the difficult coupled problem. Such an approach essentially assumes a locally infinite celerity, therefore it represent a good approximation for the fluid-wall interaction in sites of limited extent (branches, stenosis, aneurism, etc.), which include typical situations associated with vascular diseases. The problem is solved numerically in the axisymmetric approximation; the influence of wall elasticity on the flow and on the unsteady wall shear stress is studied in correspondence of parameters taken from realistic artery flow. Attention is posed to the role of phase difference between the incoming pressure and flow pulses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号