首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   9篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   18篇
  2011年   16篇
  2010年   12篇
  2009年   2篇
  2008年   6篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1982年   1篇
  1942年   1篇
  1938年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
11.
Mitochondrial cytochrome P450 systems are an indispensable component of mammalian steroid biosynthesis; they catalyze regio- and stereo-specific steroid hydroxylations and consist of three protein entities: adrenodoxin reductase (AdR), adrenodoxin (Adx), and a mitochondrial cytochrome P450 enzyme, e.g., CYP11A1 (P450 side chain cleavage, P450scc). It is known that the latter two are able to generate reactive oxygen species (ROS) in vitro . In this study, we investigated whether this ROS generation also occurs in vivo and, if so, whether it leads to the induction of apoptosis. We found that overexpression of either human or bovine Adx causes a significant loss of viability in 11 different cell lines. This loss of viability does not depend on the presence of the tumor suppressor protein p53. Transient overexpression of human Adx in HCT116 cells leads to ROS production, to a disruption of the mitochondrial transmembrane potential (DeltaPsi), to cytochrome c release from the mitochondria, and to caspase activation. In contrast, the effect of transient overexpression of human CYP11A1 on cell viability varies in different cell lines, with some being sensitive and others not. We conclude that mitochondrial cytochrome P450 systems are a source of mitochondrial ROS production and can play a role in the induction of mitochondrial apoptosis.  相似文献   
12.
Rapamycin, an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR), is a widely used immunosuppressive drug. Rapamycin affects the function of dendritic cells (DCs), antigen-presenting cells participating in the initiation of primary immune responses and the establishment of immunological memory. Voltage-gated K(+) (Kv) channels are expressed in and impact on the function of DCs. The present study explored whether rapamycin influences Kv channels in DCs. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by whole cell patch clamp. To more directly analyze an effect of mTOR on Kv channel activity, Kv1.3 and Kv1.5 were expressed in Xenopus oocytes with or without the additional expression of mTOR and voltage-gated currents were determined by dual-electrode voltage clamp. As a result, preincubation with rapamycin (0-50 nM) led to a gradual decline of Kv currents in DCs, reaching statistical significance within 6 h and 50 nM of rapamycin. Rapamycin accelerated Kv channel inactivation. Coexpression of mTOR upregulated Kv1.3 and Kv1.5 currents in Xenopus oocytes. Furthermore, mTOR accelerated Kv1.3 channel activation and slowed down Kv1.3 channel inactivation. In conclusion, mTOR stimulates Kv channels, an effect contributing to the immunomodulating properties of rapamycin in DCs.  相似文献   
13.
Ceramides (Cers) accumulate within the interstices of the outermost epidermal layers, or stratum corneum (SC), where they represent critical components of the epidermal permeability barrier. Although the SC contains substantial sphingol, indicative of ceramidase (CDase) activity, which CDase isoforms are expressed in epidermis remains unresolved. We hypothesized here that CDase isoforms are expressed within specific epidermal compartments in relation to functions that localize to these layers. Keratinocytes/epidermis express all five known CDase isoforms, of which acidic and alkaline CDase activities increase significantly with differentiation, persisting into the SC. Conversely, neutral and phytoalkaline CDase activities predominate in proliferating keratinocytes. These differentiation-associated changes in isoform activity/protein are attributed to corresponding, differentiation-associated changes in mRNA levels (by quantitative RT-PCR). Although four of the five known CDase isoforms are widely expressed in cutaneous and extracutaneous tissues, alkaline CDase-1 occurs almost exclusively in epidermis. These results demonstrate large, differentiation-associated, and tissue-specific variations in the expression and activities of all five CDase isoforms. Because alkaline CDase-1 and acidic CDase are selectively upregulated in the differentiated epidermal compartment, they could regulate functions that localize to the distal epidermis, such as permeability barrier homeostasis and antimicrobial defense.  相似文献   
14.
Emerging roles of DP and CRTH2 in allergic inflammation   总被引:6,自引:0,他引:6  
The lipid mediator prostaglandin D(2) (PGD(2)) has long been implicated in various inflammatory diseases including asthma. PGD(2) elicits biological responses by activating two seven-transmembrane (7TM) G-protein-coupled receptors, the D-prostanoid receptor DP and the chemoattractant receptor homologous-molecule expressed on T-helper-type-2 cells (CRTH2), which are linked to different signaling pathways. Understanding how immune cells integrate and coordinate signals that are triggered by the same ligand is crucial for the development of novel anti-inflammatory therapies. Here, we examine the roles of DP and CRTH2 in the orchestration of complex inflammatory processes, and discuss their importance as emerging targets for the treatment of asthma and inflammatory diseases.  相似文献   
15.
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.  相似文献   
16.

Introduction

Evidence indicates that rheumatoid arthritis (RA) patients have increased susceptibility to myocardial ischaemia that contributes to myocardial infarction. The subendocardial viability ratio (SEVR) can be measured using pulse wave analysis and reflects myocardial oxygen supply and demand. The objective of the present study was to examine specific predictors of SEVR in RA patients, with a specific focus on inflammation and classical cardiovascular disease (CVD) risk factors.

Methods

Two patient cohorts were included in the study; a primary cohort consisting of 220 RA patients and a validation cohort of 127 RA patients. All patients underwent assessment of SEVR using pulse wave analysis. Thirty-one patients from the primary cohort who were about to start anti-inflammatory treatment were prospectively examined for SEVR at pretreatment baseline and 2 weeks, 3 months and 1 year following treatment. Systemic markers of disease activity and classical CVD risk factors were assessed in all patients.

Results

The SEVR (mean ± standard deviation) for RA in the primary cohort was 148 ± 27 and in the validation cohort was 142 ± 25. Regression analyses revealed that all parameters of RA disease activity were associated with SEVR, along with gender, blood pressure and heart rate. These findings were the same in the validation cohort. Analysis of longitudinal data showed that C-reactive protein (P < 0.001), erythrocyte sedimentation rate (P < 0.005), Disease Activity Score in 28 joints (P < 0.001), mean blood pressure (P < 0.005) and augmentation index (P < 0.001) were significantly reduced after commencing anti-TNFα treatment. Increasing C-reactive protein was found to be associated with a reduction in SEVR (P = 0.02) and an increase in augmentation index (P = 0.001).

Conclusion

The present findings reveal that the SEVR is associated with markers of disease activity as well as highly prevalent classical CVD risk factors in RA, such as high blood pressure and diabetes. Further prospective studies are required to determine whether the SEVR predicts future cardiac events in RA.  相似文献   
17.
The Hellenistic farm site of Tria Platania in Macedonia, Greece, has revealed large quantities of charred olive remains, indicative of olive oil production from the fourth to the second century b.c. There, besides stones (the endocarp), new archaeobotanical elements such as olive pulp and flesh (the mesocarp) and kernels (the seed) were recovered for the first time in the archaeobotanical record in Greece. It is the purpose of this paper to present some of the material recovered from Tria Platania and interpret it in the light of developed model sequences of olive processing. In addition, Olea assemblages from other Greek sites are discussed in which Olea remains have been interpreted in various ways.  相似文献   
18.
The effect of amino acid on muscle protein degradation remains unclear. Recent studies have elucidated that proteolysis in catabolic conditions occurs through ubiquitin-proteasome proteolysis pathway and that muscle-specific ubiquitin ligases (atrogin-1 and MuRF1) play an important role in protein degradation. In the present study, we examined the direct effect of 5 mM amino acids (leucine, isoleucine, valine, glutamine and arginine) on atrogin-1 and MuRF1 levels in C2C12 muscle cells and the involved intracellular signal transduction pathway. Leucine, isoleucine and valine suppressed atrogin-1 and MuRF1 mRNA levels (approximately equal to 50%) at 6 and 24 h stimulations. Arginine showed a similar effect except at 24 h-treatment for atrogin-1 mRNA. However, glutamine failed to reduce atrogin-1 and MuRF1 mRNA levels. The inhibitory effect of leucine, isoleucine or arginine on atrogin-1 mRNA level was reversed by rapamycin, although wortmannin did not reverse the effect. PD98059 and HA89 reduced basal atrogin-1 level without influencing the inhibitory effects of those amino acids. The inhibitory effect of leucine, isoleucine or arginine on MuRF1 mRNA levels was not reversed by rapamycin. Taken together, these findings indicated that leucine, isoleucine and arginine decreased atrogin-1 mRNA levels via mTOR and that different pathways were involved in the effect of those amino acids on MuRF1 mRNA levels.  相似文献   
19.
20.
The dose-response of an individual organism can be described by a step functions if the organism survives when the dose is below a certain lethal level and dies when this level is exceeded. If, in a population of organism, the lethal dose for an individual has a unimodal distribution, the latter's properties will determine the shape of the population's response in the following manner. If the distribution is symmetric the dose-response curve has a symmetric sigmoid shape when plotted on linear coordinates. The location of the inflection point and the curve's slope around it are determined by the distribution's mode and variance. When the distribution is skewed, the dose-response curve has an asymmetric sigmoid shape which becomes reminiscent of an exponential decay when the distribution is strongly skewed to the right. The population's dose-response curve can be constructed by integration of the step changes over the distribution range. The step function representing the dose-response of an individual organism can be approximate by a Fermi function, and the distribution of an lethal doses can be represented by the Weibull distribution function. When the two functions are combined, the resulting dose-response of the populationS(X)), which is the fraction of survivors after exposure to a doseX, is given by:S(X)=∫ 0 1 [1/{+exp{(X-X c (φ))/a i ]}] whereX c (ω)={(1/b)[-ln(1-ω)]}(1/n),n andb being the constants of the Weibull distribution anda i an arbitrarily small number, i.e.a i ≪[X−X c (ϕ)], whose actual magnitude is of little significance. This model can be used to determine the underlying distributions of experimental dose-response relationship. It was applied to published survival data of microorganisms exposed to pulsed electric field, X-ray radiation and ozone to show that the different observed shapes of the dose-response curve, and shifts between them, can be expressed in terms of the correponding distribution parameters, namely the mode, variance and skewness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号