首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   50篇
  2024年   3篇
  2023年   4篇
  2022年   6篇
  2021年   37篇
  2020年   15篇
  2019年   18篇
  2018年   12篇
  2017年   13篇
  2016年   30篇
  2015年   30篇
  2014年   42篇
  2013年   25篇
  2012年   60篇
  2011年   59篇
  2010年   44篇
  2009年   28篇
  2008年   34篇
  2007年   43篇
  2006年   39篇
  2005年   33篇
  2004年   41篇
  2003年   31篇
  2002年   27篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1986年   3篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1972年   1篇
  1958年   1篇
  1950年   1篇
  1926年   1篇
  1925年   2篇
  1919年   1篇
  1918年   1篇
  1911年   2篇
  1906年   1篇
  1898年   1篇
排序方式: 共有757条查询结果,搜索用时 15 毫秒
61.
Many signaling proteins are built from simple, modular components, yet display highly complex signal-processing behavior. Here we explore how modular domains can be used to build an ultrasensitive switch--a nonlinear input/output function that is central to many complex biological behaviors. By systematically altering the number and affinity of modular autoinhibitory interactions, we show that we can predictably convert a simple linear signaling protein into an ultrasensitive switch.  相似文献   
62.
Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws – every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the study of SADs. Several key points emerge. (i) Literally dozens of models have been proposed to explain the hollow curve. Unfortunately, very few models are ever rejected, primarily because few theories make any predictions beyond the hollow-curve SAD itself. (ii) Interesting work has been performed both empirically and theoretically, which goes beyond the hollow-curve prediction to provide a rich variety of information about how SADs behave. These include the study of SADs along environmental gradients and theories that integrate SADs with other biodiversity patterns. Central to this body of work is an effort to move beyond treating the SAD in isolation and to integrate the SAD into its ecological context to enable making many predictions. (iii) Moving forward will entail understanding how sampling and scale affect SADs and developing statistical tools for describing and comparing SADs. We are optimistic that SADs can provide significant insights into basic and applied ecological science.  相似文献   
63.
Longleaf pine (Pinus palustris) savanna characterized by open-canopy, diverse herbaceous vegetation, and high amounts of bare soil once covered much of the southeastern United States Coastal Plain. The unique structural and vegetative conditions of this ecosystem support endemic reptiles and amphibians that have declined as longleaf pine forests have been lost or degraded. Private working pine (Pinus spp.) forests managed for timber production now occur throughout the southeastern United States and have replaced much of the historical longleaf pine savanna. The examination of herpetofaunal (reptile, amphibian) communities in private working loblolly pine (P. taeda) landscapes, particularly in the western Gulf Coastal Plain is lacking. Using repeated field surveys and hierarchical community occupancy models, we examined occupancy and species richness of herpetofauna across 81 sites spanning gradients of management practices, vegetative conditions, and soil composition in northwestern Louisiana, USA, 2017–2019. Young pine stands (<6 yr) exhibited structural characteristics most similar to mature longleaf pine reference sites (>30 yr), while mid-aged stands (13–26 yr) often featured closed canopy and dense midstory. Vegetation conditions varied widely depending on landscape characteristics and site-specific disturbance regimes. We documented 43 species of herpetofauna, including 9 open-pine-associated species. Occupancy of open-pine-associated herpetofauna was positively associated with open-canopy and understory conditions, and sandy soil area. Sites providing open-canopy conditions were often occupied by open-pine-associated species regardless of overstory type and disturbance method. Overall richness of herpetofauna was greatest at sites with moderate canopy cover outside of sandy soil regions. Working pine landscapes in the western Gulf Coastal Plain can support diverse herpetofaunal assemblages, including open-pine-associated species, when management practices maintain open-canopy conditions on sandy, upland soils. More broadly, our results provide insight into how forest management practices affect herpetofauna and may guide practices that can contribute to conservation value of working pine forests.  相似文献   
64.
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine‐responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co‐ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.  相似文献   
65.
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.  相似文献   
66.
67.
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr420) or inhibit (Tyr531) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr531 and activates Fyn, while STEP (STriatal‐Enriched protein tyrosine Phosphatase) dephosphorylates Tyr420 and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr789. Dephosphorylation of Tyr789 prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr789, as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn.

  相似文献   

68.
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号