首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   64篇
  2023年   4篇
  2022年   3篇
  2021年   16篇
  2020年   9篇
  2019年   17篇
  2018年   18篇
  2017年   16篇
  2016年   35篇
  2015年   46篇
  2014年   58篇
  2013年   57篇
  2012年   81篇
  2011年   72篇
  2010年   61篇
  2009年   54篇
  2008年   45篇
  2007年   53篇
  2006年   51篇
  2005年   33篇
  2004年   28篇
  2003年   29篇
  2002年   38篇
  2001年   7篇
  2000年   6篇
  1999年   10篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   8篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
101.
Abstract Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.  相似文献   
102.
103.
Flow cytometry is a valuable tool in research and diagnostics including minimal residual disease (MRD) monitoring of hematologic malignancies. However, its gradual advancement toward increasing numbers of fluorescent parameters leads to information rich datasets, which are challenging to analyze by standard gating and do not reflect the multidimensionality of the data. We have developed a novel method to analyze complex flow cytometry data, based on hierarchical clustering analysis (HCA) but with a new underlying algorithm, using Mahalanobis distance measure. HCA is scalable to analyze complex multiparameter datasets (here demonstrated on up to 12 color flow cytometry and on a 20-parameter synthetic dataset). We have validated this method by comparison with standard gating approaches when performed independently by expert cytometrists. Acute lymphoblastic leukemia blast populations were analyzed in diagnostic and follow-up datasets (n = 123) from three centers. HCA results correlated very well (Passing-Bablok correlation coefficient = 0.992, slope = 1, intercept = -0.01) with standard gating data obtained by the I-BFM FLOW-MRD study group. To further improve the performance in follow-up samples with low MRD levels and to automate MRD detection, we combined HCA with support vector machine (SVM) learning. HCA in combination with SVM provides a novel diagnostic tool that not only allows analysis of increasingly complex flow cytometry data but also is less observer-dependent compared with classical gating and has potential for automation.  相似文献   
104.
The objective of this study was to compare morphological characteristics, kinetics of development, and gene expression of male and female IVP embryos that were cultured until day (D)15 (fertilization = D0), using either phosphate-buffered saline (PBS) or Milli-Q water (MQW) to dilute the agarose gel used for tunnel construction. On D11, embryos (n = 286) were placed in agarose gel tunnels diluted in PBS and MQW. Embryos were evaluated for morphology, and embryo size was recorded on D11, D12.5, D14 and D15. Then, embryos were sexed and used for gene expression analyses (G6PD, GLUT1, GLUT3, PGK1, PLAC8, KRT8, HSF1 and IFNT). The percentage of elongated embryos at D15 was higher (p < 0.05) in the PBS (54%) than in the MQW (42%) gel. However, embryos produced in MQW were bigger (p < 0.05) and had a lower expression of GLUT1 (p = 0.08) than those cultured in PBS. There was a higher proportion of male than female embryos at D15 in both treatments, MQW (65% vs. 35%; p < 0.05) and PBS (67% vs. 33%; p < 0.05); however, embryo size was not significantly different between genders. Moreover, D15 female embryos had greater expression of G6PD (p = 0.05) and KRT8 (p = 0.03) than male embryos. In conclusion, the diluent used for tunnel construction affected embryo development in the post-hatching development (PHD) system, and the use of MQW was the most indicative measure for the evaluation of embryo quality. Male and female embryos cultured from D11 to D15, either in an MQW or PBS agarose gel, demonstrated similar development but different gene expression.  相似文献   
105.
106.
Human cytomegalovirus (HCMV) is the most frequent cause of congenital viral infections in humans and frequently leads to long-term central nervous system (CNS) abnormalities that include learning disabilities, microcephaly, and hearing loss. The pathogenesis of the CNS infection has not been fully elucidated and may arise as a result of direct damage of CMV-infected neurons or indirectly secondary to inflammatory response to infection. We used a recently established model of mouse CMV (MCMV) infection in newborn mice to analyze the contribution of humoral immunity to virus clearance from the brain. In brains of MCMV-infected newborn mice treated with immune serum, the titer of infectious virus was reduced below detection limit, whereas in the brains of mice receiving control (nonimmune) serum significant amounts of virus were recovered. Moreover, histopathological and immunohistological analyses revealed significantly less CNS inflammation in mice treated with immune serum. Treatment with MCMV-specific monoclonal antibodies also resulted in the reduction of virus titer in the brain. Recipients of control serum or irrelevant antibodies had more viral foci, marked mononuclear cell infiltrates, and prominent glial nodules in their brains than mice treated with immune serum or MCMV-specific antibodies. In conclusion, our data indicate that virus-specific antibodies have a protective role in the development of CNS pathology in MCMV-infected newborn mice, suggesting that antiviral antibodies may be an important component of protective immunological responses during CMV infection of the developing CNS.  相似文献   
107.
Molecular characterization of Paracoccidioides brasiliensis variant strains that had been preserved under mineral oil for decades was carried out by random amplified polymorphic DNA analysis (RAPD). On P. brasiliensis variants in the transitional phase and strains with typical morphology, RAPD produced reproducible polymorphic amplification products that differentiated them. A dendrogram based on the generated RAPD patterns placed the 14 P. brasiliensis strains into five groups with similarity coefficients of 72%. A high correlation between the genotypic and phenotypic characteristics of the strains was observed. A 750 bp-RAPD fragment found only in the wild-type phenotype strains was cloned and sequenced. Genetic similarity analysis using BLASTx suggested that this RAPD marker represents a putative domain of a hypothetical flavin-binding monooxygenase (FMO)-like protein of Neurospora crassa.  相似文献   
108.
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.  相似文献   
109.
The inner wall of excised rat aorta was scraped by a microelectrode and Ca(2+) signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), followed by a long-lasting decay phase due to Ca(2+) influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P(2X) and P(2Y) receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca(2+) influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La(3+) and Ni(2+), but not to Gd(3+). Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca(2+) entry.  相似文献   
110.
Thermodynamic, circular dichroism (CD), and activity measurements have been used to characterize the different conformational states and the effects of NaCl concentrations (0.0-3.0 M) on thermal unfolding of ornithine carbamoyltransferase (OCT) from Alopias vulpinus. Furthermore conformational changes in whole enzyme structure have been monitored by titration of SH-groups. OCT unfolding process follows an irreversible two-state mechanism with a first-order kinetic of denaturation, without breaking-point. NaCl shows very little stabilization effects at low concentration and its action become very important over 1.5 M concentration. The presence of 3.0 M NaCl completely avoids OCT unfolding at 60, 64 and 66 degrees C. Kinetic and thermodynamic parameters are strongly influenced by the presence of high NaCl concentration. Our experiments showed that NaCl stabilization process involved changes in preferential binding, in electrostatic and van der Waals interactions and exposure of buried site and SH-groups. During thermal denaturation, UV-vis and CD spectroscopy show that high salts concentration preserves OCT activity, avoiding exposure of hydrophobic site and destruction of secondary and tertiary structure elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号