首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   20篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   15篇
  2015年   12篇
  2014年   25篇
  2013年   25篇
  2012年   16篇
  2011年   23篇
  2010年   20篇
  2009年   9篇
  2008年   23篇
  2007年   8篇
  2006年   13篇
  2005年   14篇
  2004年   19篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有292条查询结果,搜索用时 46 毫秒
91.
Our aim was to analyze the role of phosphatidylinositol 3-kinase (PI3K)-AKT and MAPK signaling pathways in the regulation of muscle mass and slow-to-fast phenotype transition during hindlimb unloading (HU). For that purpose, we studied, in rat slow soleus and fast extensor digitorum longus muscles, the time course of anabolic PI3K-AKT-mammalian target of rapamycin, catabolic PI3K-AKT-forkhead box O (FOXO), and MAPK signaling pathway activation after 7, 14, and 28 days of HU. Moreover, we performed chronic low-frequency soleus electrostimulation during HU to maintain exclusively contractile phenotype and so to determine more precisely the role of these signaling pathways in the modulation of muscle mass. HU induced a downregulation of the anabolic AKT, mammalian target of rapamycin, 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, and glycogen synthase kinase-3β targets, and an upregulation of the catabolic FOXO1 and muscle-specific RING finger protein-1 targets correlated with soleus muscle atrophy. Unexpectedly, soleus electrostimulation maintained 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, FOXO1, and muscle-specific RING finger protein-1 to control levels, but failed to reduce muscle atrophy. HU decreased ERK phosphorylation, while electrostimulation enabled the maintenance of ERK phosphorylation similar to control level. Moreover, slow-to-fast myosin heavy chain phenotype transition and upregulated glycolytic metabolism were prevented by soleus electrostimulation during HU. Taken together, our data demonstrated that the processes responsible for gradual disuse muscle plasticity in HU conditions involved both PI3-AKT and MAPK pathways. Moreover, electrostimulation during HU restored PI3K-AKT activation without counteracting soleus atrophy, suggesting the involvement of other signaling pathways. Finally, electrostimulation maintained initial contractile and metabolism properties in parallel to ERK activation, reinforcing the idea of a predominant role of ERK in the regulation of muscle slow phenotype.  相似文献   
92.
A novel class of 2,3-tri- and tetrasubstituted γ-butyrolactones analogous to paraconic acids has been synthesized in one step using a straightforward three-component reaction among aryl bromides, dimethyl itaconate and carbonyl compounds. The in vitro cytotoxic activity of representative compounds has been evaluated against a panel of human cancer cell lines (KB, HCT116, MCF7, HL60). While most molecules exhibit a low to moderate background activity on both KB and HL60 cancer cell lines, one compound shows increased antiproliferative activities against both cell lines with IC(50) values in the 10(-7)-10(-6)mol/L range. An extended evaluation indicated that this compound also inhibits PC3, SK-OV3, MCF7R and HL60R cell growth in the same fashion.  相似文献   
93.
The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.  相似文献   
94.
Phlorotannins have been purified and fractionated in the brown alga Ascophyllum nodosum using successively differential extraction, liquid-liquid separation and dialysis. Both the phenol content and the radical scavenging capacity of the resulting fractions were assayed by the Folin-Ciocalteu test and the DPPH method, respectively, whilst purity of the fractions was assessed by 1H NMR analysis. The purification process resulted in the isolation of six fractions from each crude extract with only minor losses. High levels of phenols, up to 97-99%, were measured in semi-purified fractions containing phlorotannins more than 50 kDa in average molecular size, accounting for more than 95% of the ethyl acetate phenol pool. As a consequence, purity decreased in ethyl acetate fractions together with the molecular size of compounds. The importance of differential extraction based on the polarity of phenols is highlighted by the fact that most of these compounds were found in the ethyl acetate fraction after the first extraction step in 100% methanol, whilst two thirds of phenols extracted by 50% methanol remained in the aqueous phase. The radical scavenging activity of the fractions was correlated with the phenol content and was maximal in complete ethyl acetate fractions and in dialysis concentrates containing molecules more than 50 kDa in size. The specific activity of phenols was found to be maximal for molecules smaller than 2 kDa when isolated from the 100% methanol extract and 1-4 times smaller in the water phase separated from the same extract. The distribution of radical-scavenging potentials in the phenol pool of A. nodosum supports the idea that physiological roles and putative uses of phlorotannins are under the control of a polarity-molecular size complex.  相似文献   
95.
The nervous system influences immune responses through the release of neural factors such as neuropeptides. Among them, the tachykinin substance P (SP) signals via the neurokinin 1 receptor (NK-1R), which is expressed by various immune cells. We thereby analyzed in this paper whether tachykinins may participate in human CD4(+) Th cell polarization. We report that SP and hemokinin-1 (HK-1) upregulate IL-17A and IFN-γ production by human memory CD4(+) T cells without affecting IL-4 and IL-10 production. SP and HK-1 switch non-Th17-committed CD4(+) memory T cells into bona fide Th17 cells and Th1/Th17 cells. In contrast, SP and HK-1 do not modulate the polarization of naive CD4(+) T cells. SP- and HK-1-induced Th17 cell generation is mediated through NK-1R and requires the presence of monocytes. SP and HK-1 trigger IL-1β, IL-6, and TNF-α production, upregulate IL-23 production, and enhance TNF-like 1A expression on monocyte surface. Neutralization experiments demonstrated that IL-1β, IL-23, and TNF-like 1A are involved in the SP- and HK-1-induced Th17 cell. The other members of the tachykinin family, neurokinins A and B, have no effect on the differentiation of naive and memory T cells. These results thereby show that SP and HK-1 are novel Th17 cell-inducing factors that may act locally on memory T cells to amplify inflammatory responses.  相似文献   
96.
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant–bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.  相似文献   
97.
98.
99.

Background and Aims

In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales.

Methods

A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint.

Key Results and Conclusions

Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake.  相似文献   
100.

Background and Aims

An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions.

Methods

The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root.

Key Results

Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest.

Conclusions

This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号