首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   15篇
  2020年   3篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   11篇
  2013年   7篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   6篇
  2008年   17篇
  2007年   20篇
  2006年   11篇
  2005年   19篇
  2004年   25篇
  2003年   12篇
  2002年   25篇
  2001年   11篇
  2000年   11篇
  1999年   5篇
  1998年   11篇
  1997年   3篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
  1959年   2篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
261.
262.
The RGD story: a personal account.   总被引:8,自引:0,他引:8  
  相似文献   
263.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   
264.
When resources are limited, parents should decide the optimal number, size, and sex of progeny, and offspring should decide the optimal allocation of resources to different costly functions, such as growth and immunity. We manipulated clutch sizes of Eurasian kestrels by one egg to estimate possible cumulative effects of incubation and chick rearing costs on parental body condition, feeding effort, and offspring viability. No obvious effects of clutch size manipulations on feeding effort were found while feeding effort was adjusted to the original clutch size. Enlarged and control nests suffered from higher nestling mortality than reduced nests, and chicks of the enlarged group were in poorer body condition than chicks of the reduced group. Controlling for body mass, male chicks exhibited lower cell-mediated immunity assessed by a cutaneous hypersensitivity response than females, but only in treatments suffering from food restrictions, as indicated by chick starvation. These novel results reveal inter-sexual differences in physiological strategies in early life, suggesting sex-related differences in susceptibility to disease and consequently in survival prospects of offspring.  相似文献   
265.
The suggested link between lemming cycles and reproductive success of arctic birds is caused by potential effects of varying predation pressure (the Alternative Prey Hypothesis, APH) and protective association with birds of prey (the Nesting Association Hypothesis, NAH). We used data collected over two complete lemming cycles to investigate how fluctuations in lemming density were associated with nesting success of greater snow geese ( Anser caerulescens atlanticus ) in the Canadian High Arctic. We tested predictions of the APH and NAH for geese breeding at low and high densities. Goose nesting success varied from 22% to 91% between years and the main egg predator was the arctic fox ( Alopex lagopus ). Nesting associations with snowy owls ( Nyctea scandiaca ) were observed but only during peak lemming years for geese nesting at low density. Goose nesting success declined as distance from owls increased and reached a plateau at 550 m. Artificial nest experiments indicated that owls can exclude predators from the vicinity of their nests and thus reduce goose egg predation rate. Annual nest failure rate was negatively associated with rodent abundance and was generally highest in low lemming years. This relationship was present even after excluding goose nests under the protective influence of owls. However, nest failure was inversely density-dependent at high breeding density. Thus, annual variations in nest density influenced the synchrony between lemming cycles and oscillations in nesting success. Our results suggest that APH is the main mechanism linking lemming cycles and goose nesting success and that nesting associations during peak lemming years (NAH) can enhance this positive link at the local level. The study also shows that breeding strategies used by birds (the alternative prey) could affect the synchrony between oscillations in avian reproductive success and rodent cycles.  相似文献   
266.
In conifers, attacks by bark beetles and associated pathogenic fungi cause an induced wound response, which is characterized by accumulation of antifungal compounds and morphological changes that aid wound healing. In this article the stilbene and terpene concentrations of Norway spruce phloem were monitored as symptoms of induced wound responses in relation to changed nutrient conditions caused by fertilization. Plots of mature Norway spruce were fertilized with N, P or NPK. One year after fertilization the trees were artificially infected with Ceratocystis polonica, a pathogenic fungus associated with the bark beetle Ips typographus. The response of stilbenes to fungal inoculation was mainly qualitative. The concentration of stilbene glycosides in the phloem decreased, and in the immediate vicinity of the site of fungal inoculation, stilbene glycosides were less frequent than in mechanically wounded or unwounded phloem. Corresponding stilbene aglycones were most frequent inside the reaction lesion. The concentration of total stilbene aglycones near the inoculation site was significantly lower in N-fertilized trees than in unfertilized trees. Fungal inoculation caused a strong quantitative response in terpenes. The total terpene concentration of the phloem increased significantly, to almost 100 times greater near the inoculation site compared to the constitutive values. N fertilization significantly reduced the total terpene and total stilbene aglycone concentrations near the inoculation sites. Thus, N fertilization may reduce the ability of Norway spruce to defend itself against fungal pathogens.  相似文献   
267.
Chronotype is an emerging predictor of health and longevity, and understanding its influence on chronic diseases is important for constructing conceptual models of long-term pathways to health. We assessed the associations of chronotype with health status in the general Finnish adult population. Our population-based data were derived from the National FINRISK 2012 study and consisted of 4414 participants, aged 25–74?years, living in Finland. As part of their health examination, participants were asked about their circadian preference to the daily activities (morningness–eveningness) and a diagnosis or treatment for a set of common noncommunicable medical conditions and chronic diseases during the past 12?months. We found that there were 1935 (43.8%) morning types (MTs) and 595 (13.5%) evening types (ETs) and that 1884 (42.7%) were intermediates. As compared with the MTs, the ETs had significantly greater odds for depression (OR = 2.44, 95% CI = 1.52–3.90, p < 0.001) and other mental disorders (OR = 5.18, 95% CI = 2.32–11.52, p < 0.001). The odds were also increased for gallstones, and chronic obstructive pulmonary disease, but these did not remain significant after controlling for multiple testing. Responses to the single-item subjective estimation on the chronotype yielded the association of the definitely evening type of persons with the diagnosis or treatment of cardiac insufficiency (OR = 1.99, 95% CI = 1.02–3.88, p = 0.044) that was corroborated as the greater the eveningness score was, the more common the diagnosis or treatment of cardiac insufficiency was (β = 0.92, 95% CI = 0.85–0.98, p = 0.013). This exploratory study adds further support to the role of evening chronotype in chronic disease risk, albeit underlying mechanisms remain to be elucidated.  相似文献   
268.
Abstract Genetic variance‐covariance structures (G), describing genetic constraints on microevolutionary changes of populations, have a central role in the current theories of life‐history evolution. However, the evolution of Gs in natural environments has been poorly documented. Resource quality and quantity for many animals and plants vary seasonally, which may shape genetic architectures of their life histories. In the mountain birch‐insect herbivore community, leaf quality of birch for insect herbivores declines profoundly during both leaf growth and senescence, but remains stable during midsummer. Using six sawfly species specialized on the mountain birch foliage, we tested the ways in which the seasonal variation in foliage quality of birch is related to the genetic architectures of larval development time and body size. In the species consuming mature birch leaves of stable quality, that is, without diet‐imposed time constraints for development time, long development led to high body mass. This was revealed by the strongly positive phenotypic and genetic correlations between the traits. In the species consuming growing or senescing leaves, on the other hand, the rapidly deteriorating leaf quality prevented the larvae from gaining high body mass after long development. In these species, the phenotypic and genetic correlations between development time and final mass were negative or zero. In the early‐summer species with strong selection for rapid development, genetic variation in development time was low. These results show that the intuitively obvious positive genetic relationship between development time and final body mass is a probable outcome only when the constraints for long development are relaxed. Our study provides the first example of a modification in guild‐wide patterns in the genetic architectures brought about by seasonal variation in resource quality.  相似文献   
269.
Due to rapidly changing physical and biochemical characteristics of growing leaves, correlations between traits of foliage biochemistry and the performance indices of flush feeding herbivores may vary considerably following relatively minor changes in experimental conditions. We examined the effects of the seasonal and inter-tree variation of a comprehensive array of biochemical compounds on the success of an early season geometrid, Epirrita autumnata, feeding on maturing foliage of mountain birch, Betula pubescens ssp. czerepanovii. We monitored the concentrations of individual phenolics, sugars, total nitrogen, nitrogen of proteins, and nitrogen of soluble compounds, water and acetone-insoluble residue. Simultaneously we recorded larval consumption, physiological performance, growth, and pupal mass of E. autumnata. We found significant phenological changes in almost all leaf traits measured. In bioassays with half-grown leaves, leaf gallotannin concentrations showed a nonlinear effect: in trees with high foliar gallotannin concentrations (over 10 mg g−1), physiological performance was strongly reduced by high gallotannin concentrations. In trees with lower gallotannin concentrations, on the other hand, larval growth was reduced by soluble proanthocyanidins, not gallotannins. Differences between high and low gallotannin trees largely depended on phenology, i.e., on the age of leaves. However, not all the differences in leaf traits between late (with high gallotannin concentrations at the time of the bioassay) and early flushing trees disappeared with leaf maturation, indicating that there is also phenology-independent variance in the tree population. In the full-grown leaves of all the study trees, low concentrations of water and of nitrogen of proteins (but not nitrogen of soluble compounds) were the main factors reducing pupal masses of E. autumnata, while neither gallotannin nor proanthocyanidins now played a significant role. The observed change in the factors underlying leaf quality (from gallotannins and proanthocyanidins to nitrogen and water) relate to the activity of the shikimate pathway and the formation of cell walls: gallotannins and proanthocyanidins are both produced in the pathway, and these tannins are assumed to contribute – via binding into cell walls – to tough and durable cell walls. Interestingly, low quality of leaves did not automatically translate into low foliar consumption (i.e., benefits to the tree). On the trees with young, high gallotannin leaves, larvae actually increased consumption on low quality foliage. In the group of trees with slightly more developed, low gallotannin leaves, the quality of leaves did not clearly modify amounts consumed. In full-grown leaves, low leaf quality strongly reduced leaf consumption. These results emphasize the strong influence of tree phenology on the relationships between biochemical compounds and the herbivore. Received: 30 November 1998 / Accepted: 1 March 1999  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号