首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2849篇
  免费   181篇
  2023年   12篇
  2022年   25篇
  2021年   70篇
  2020年   58篇
  2019年   59篇
  2018年   48篇
  2017年   54篇
  2016年   94篇
  2015年   140篇
  2014年   168篇
  2013年   207篇
  2012年   276篇
  2011年   261篇
  2010年   152篇
  2009年   119篇
  2008年   201篇
  2007年   162篇
  2006年   146篇
  2005年   143篇
  2004年   119篇
  2003年   108篇
  2002年   85篇
  2001年   21篇
  2000年   17篇
  1999年   27篇
  1998年   24篇
  1997年   17篇
  1996年   8篇
  1995年   16篇
  1994年   12篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   10篇
  1985年   6篇
  1984年   6篇
  1982年   8篇
  1981年   5篇
  1978年   6篇
  1976年   6篇
  1975年   6篇
  1973年   6篇
  1968年   11篇
  1966年   4篇
  1964年   5篇
  1962年   5篇
  1957年   5篇
  1955年   3篇
排序方式: 共有3030条查询结果,搜索用时 15 毫秒
101.
102.
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.  相似文献   
103.
Some ultrastructural characteristics of cell types in barley root tip and root cap were recorded and compared with the aim to identify these cells by electron microscopy, even if positional information is limited in the ultrathin section. Root cap and root body initials could be distinguished according to the type of proplastids. Cap and apical cells also differed at the level of dictyosomes and the relative quantity of the dense substance in the enlarging vacuoles. The maturity of cap cells could be judged from the degree of vacuolization and the size of starch grains (statoliths) in the plastids.  相似文献   
104.
The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for biosynthesis of the nucleotide-activated precursor GDP-d-rhamnose, gmd and rmd, were cloned, sequenced, and overexpressed in Escherichia coli. The corresponding enzymes Gmd and Rmd were purified to homogeneity, and functional studies were performed. GDP-d-mannose dehydratase (Gmd) converted GDP-d-mannose to GDP-6-deoxy-d-lyxo-4-hexulose, with NADP+ as cofactor. The reductase Rmd catalyzed the second step in the pathway, namely the reduction of the keto-intermediate to the final product GDP-d-rhamnose using both NADH and NADPH as hydride donor. The elution behavior of the intermediate and end product was analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to identify the structure of the final product of the reaction sequence as GDP-alpha-d-rhamnose. This is the first characterization of a GDP-6-deoxy-d-lyxo-4-hexulose reductase. In addition, Gmd has been shown to be a bifunctional enzyme with both dehydratase and reductase activities. So far, no enzyme catalyzing these two types of reactions has been identified. Both Gmd and Rmd are members of the SDR (short chain dehydrogenase/reductase) protein family.  相似文献   
105.
The large scale production of recombinant collagen for use in biomaterials requires an efficient expression system capable of processing a large (>400Kd) multisubunit protein requiring post-translational modifications. To investigate whether the mammary gland of transgenic animals fulfills these requirements, transgenic mice were generated containing the S1-casein mammary gland-specific promoter operatively linked to 37Kb of the human 1(I) procollagen structural gene and 3 flanking region. The frequency of transgenic lines established was 12%. High levels of soluble triple helical homotrimeric [(1)3] type I procollagen were detected (up to 8mg/ml) exclusively in the milk of six out of 9 lines of lactating transgenic mice. The transgene-derived human procollagen chains underwent efficient assembly into a triple helical structure. Although proline or lysine hydroxylation has never been described for any milk protein, procollagen was detected with these post-translational modifications. The procollagen was stable in mil; minimal degradation was observed. These results show that the mammary gland is capable of expressing a large procollagen gene construct, efficiently assembling the individual polypeptide chains into a stable triple helix, and secreting the intact molecule into the milk.  相似文献   
106.
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.  相似文献   
107.
Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.  相似文献   
108.
109.
We hypothesized that transient high-glucose concentration interferes with mediation by nitric oxide (NO) of flow-induced dilation (FID) of arterioles due to enhanced production of superoxide. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles ( approximately 130 microm) after transient high-glucose treatment (tHG; incubation with 30 mM glucose for 1 h), FID was reduced (maximum: control, 38 +/- 4%; after tHG, 17 +/- 3%), which was not further diminished by the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 18 +/- 2%). Correspondingly, an enhanced polyethylene-glycol-SOD (PEG-SOD)-sensitive superoxide production was detected after tHG in carotid arteries by dihydroethydine (DHE) staining. Presence of PEG-SOD during tHG prevented the reduction of FID (41 +/- 3%), which could be inhibited by l-NAME (20 +/- 4%). Administration of PEG-SOD after tHG did not prevent the reduction of FID (22 +/- 3%). Sepiapterin, a precursor of the NO synthase cofactor tetrahydrobiopterin (BH(4)), administered during tHG did not prevent the reduction of FID (maximum, 15 +/- 5%); however, it restored FID when administered after tHG (32 +/- 4%). Furthermore, inhibition of either glycolysis by 2-deoxyglucose or mitochondrial complex II by 2-thenoyltrifluoroacetone reduced the tHG-induced DHE-detectable enhanced superoxide production in carotid arteries and prevented FID reduction in arterioles (39 +/- 5 and 35 +/- 2%). Collectively, these findings suggest that in skeletal muscle arterioles, a transient elevation of glucose via its increased metabolism, elicits enhanced production of superoxide, which decreases the bioavailability of NO and the level of the NOS cofactor BH(4), resulting in a reduction of FID mediated by NO.  相似文献   
110.
The fecal and mucosal microbiota of infants with rectal bleeding and the fecal microbiota of healthy age-matched controls were investigated by fluorescent in situ hybridization. Bifidobacteria were the main genus in both the feces and mucosa. The other genera tested, Bacteroides, Clostridium, Escherichia coli and lactobacilli/enterococci, represented only minor constituents. No differences in fecal microbiota were observed between patients and controls. In the patients, however, four times greater numbers of bifidobacteria were observed in the feces when compared to the mucosa. Notwithstanding this difference, a strong positive correlation prevailed for bifidobacteria in feces and mucosal samples. The genera assessed accounted for 16% of total bacterial counts on mucosal samples and for 47% of total bacterial counts in feces. This indicates that the unidentified part of the microbiota, especially on the mucosa, deserves more attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号