首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1804篇
  免费   132篇
  2021年   15篇
  2020年   13篇
  2019年   11篇
  2018年   23篇
  2017年   21篇
  2016年   31篇
  2015年   70篇
  2014年   73篇
  2013年   81篇
  2012年   110篇
  2011年   105篇
  2010年   87篇
  2009年   55篇
  2008年   71篇
  2007年   98篇
  2006年   70篇
  2005年   78篇
  2004年   64篇
  2003年   81篇
  2002年   75篇
  2001年   23篇
  2000年   18篇
  1999年   16篇
  1998年   21篇
  1997年   15篇
  1996年   13篇
  1995年   10篇
  1992年   17篇
  1988年   10篇
  1987年   11篇
  1986年   13篇
  1985年   11篇
  1984年   18篇
  1983年   19篇
  1982年   20篇
  1981年   10篇
  1980年   15篇
  1979年   14篇
  1978年   14篇
  1977年   11篇
  1976年   11篇
  1974年   13篇
  1971年   10篇
  1970年   18篇
  1968年   15篇
  1967年   13篇
  1965年   10篇
  1954年   10篇
  1937年   13篇
  1930年   9篇
排序方式: 共有1936条查询结果,搜索用时 140 毫秒
101.
102.

Background  

High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination.  相似文献   
103.
The capsid protein, C, of tick-borne encephalitis virus has recently been found to tolerate deletions up to a length of 16 amino acid residues that partially removed the central hydrophobic domain, a sequence element conserved among flaviviruses which may be crucial for virion assembly. In this study, mutants with deletion lengths of 19, 21, 27, or 30 residues, removing more or all of this hydrophobic domain, were found to yield viable virus progeny, but this was without exception accompanied by the emergence of additional mutations within protein C. These point mutations or sequence duplications were located downstream of the engineered deletion and generally increased the hydrophobicity, suggesting that they may compensate for the loss of the central hydrophobic domain. Two of the second-site mutations, together with the corresponding deletion, were introduced into a wild-type genetic backbone, and the analysis of these "double mutants" provided direct evidence that the viability of the deletion mutant indeed depended on the presence of the second-site mutation. Our results corroborate the notion that hydrophobic interactions of protein C are essential for the assembly of infectious flavivirus particles but rule out the possibility that individual residues of the central hydrophobic domain are absolutely required for infectivity. Furthermore, the double mutants were found to be highly attenuated and capable of inducing a protective immune response in mice at even lower inoculation doses than the previously characterized 16-amino-acid-residue deletion mutant, suggesting that the combination of large deletions and second-site mutations may be a superior way to generate safe, attenuated flavivirus vaccine strains.  相似文献   
104.
Hantaviruses infect human endothelial and immune cells, causing two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). We have identified key signaling elements termed immunoreceptor tyrosine-based activation motifs (ITAMs) within the G1 cytoplasmic tail of all HPS-causing hantaviruses. ITAMs direct receptor signaling within immune and endothelial cells and the presence of ITAMs in all HPS-causing hantaviruses provides a means for altering normal cellular responses which maintain vascular integrity. The NY-1 G1 ITAM was shown to coprecipitate a complex of phosphoproteins from cells, and the G1 ITAM is a substrate for the Src family kinase Fyn. The hantavirus ITAM coprecipitated Lyn, Syk, and ZAP-70 kinases from T or B cells, while mutagenesis of the ITAM abolished these interactions. In addition, G1 ITAM tyrosines directed intracellular interactions with Syk by mammalian two-hybrid analysis. These findings demonstrate that G1 ITAMs bind key cellular kinases that regulate immune and endothelial cell functions. There is currently no means for establishing the role of the G1 ITAM in hantavirus pathogenesis. However, the conservation of G1 ITAMs in all HPS-causing hantaviruses and the role of these signaling elements in immune and endothelial cells suggest that functional G1 ITAMs are likely to dysregulate normal immune and endothelial cell responses and contribute to hantavirus pathogenesis.  相似文献   
105.
Milkman R  Jaeger E  McBride RD 《Genetics》2003,163(2):475-483
Two 6- to 8-min regions, centered respectively near 45 min (O-antigen region) and 99 min (restriction-modification region) on the Escherichia coli chromosome, display unusually high variability among 11 otherwise very similar strains. This variation, revealed by restriction fragment length polymorphism (RFLP) and nucleotide sequence comparisons, appears to be due to a great local increase in the retention frequency of recombinant replacements. We infer a two-step mechanism. The first step is the acquisition of a small stretch of DNA from a phylogenetically distant source. The second is the successful retransmission of the imported DNA, together with flanking native DNA, to other strains of E. coli. Each cell containing the newly transferred DNA has a very high selective advantage until it reaches a high frequency and (in the O-antigen case) is recognized by the new host's immune system. A high selective advantage increases the probability of retention greatly; the effective recombination rate is the product of the basic recombination rate and the probability of retention. Nearby nucleotide sequences clockwise from the O-antigen (rfb) region are correlated with specific O antigens, confirming local hitchhiking. Comparable selection involving imported restriction endonuclease genes is proposed for the region near 99 min.  相似文献   
106.
Proteins of the VirB4 family are encoded by conjugative plasmids and by type IV secretion systems, which specify macromolecule export machineries related to conjugation systems. The central feature of VirB4 proteins is a nucleotide binding site. In this study, we asked whether members of the VirB4 protein family have similarities in their primary structures and whether these proteins hydrolyze nucleotides. A multiple-sequence alignment of 19 members of the VirB4 protein family revealed striking overall similarities. We defined four common motifs and one conserved domain. One member of this protein family, TrbE of plasmid RP4, was genetically characterized by site-directed mutagenesis. Most mutations in trbE resulted in complete loss of its activities, which eliminated pilus production, propagation of plasmid-specific phages, and DNA transfer ability in Escherichia coli. Biochemical studies of a soluble derivative of RP4 TrbE and of the full-length homologous protein R388 TrwK revealed that the purified forms of these members of the VirB4 protein family do not hydrolyze ATP or GTP and behave as monomers in solution.  相似文献   
107.
Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.  相似文献   
108.
The seeds of cereals represent an important sink for metabolites during the accumulation of storage products, and seeds are an essential component of human and animal nutrition. Understanding the metabolic interconversions (networks) underpinning storage product formation could provide the foundation for effective metabolic engineering of these primary nutritional sources. In this paper, we describe the use of retrobiosynthetic nuclear magnetic resonance analysis to establish the metabolic history of the glucose (Glc) units of starch in maize (Zea mays) kernels. Maize kernel cultures were grown with [U-(13)C(6)]Glc, [U-(13)C(12)]sucrose, or [1,2-(13)C(2)]acetate as supplements. After 19 d, starch was hydrolyzed, and the isotopomer composition of the resulting Glc was determined by quantitative nuclear magnetic resonance analysis. [1,2-(13)C(2)]Acetate was not incorporated into starch. [U-(13)C(6)]Glc or [U-(13)C(12)]sucrose gave similar labeling patterns of polysaccharide Glc units, which were dominated by [1,2,3-(13)C(3)]- and [4,5,6-(13)C(3)]-isotopomers, whereas the [U-(13)C(6)]-, [3,4,5,6-(13)C(4)]-, [1,2-(13)C(2)]-, [5,6-(13)C(2)], [3-(13)C(1)], and [4-(13)C(1)]-isotopomers were present at lower levels. These isotopomer compositions indicate that there is extensive recycling of Glc before its incorporation into starch, via the enzymes of glycolytic, glucogenic, and pentose phosphate pathways. The relatively high abundance of the [5,6-(13)C(2)]-isotopomer can be explained by the joint operation of glycolysis/glucogenesis and the pentose phosphate pathway.  相似文献   
109.
Current research in the biosciences depends heavily on the effective exploitation of huge amounts of data. These are in disparate formats, remotely dispersed, and based on the different vocabularies of various disciplines. Furthermore, data are often stored or distributed using formats that leave implicit many important features relating to the structure and semantics of the data. Conceptual data modelling involves the development of implementation-independent models that capture and make explicit the principal structural properties of data. Entities such as a biopolymer or a reaction, and their relations, eg catalyses, can be formalised using a conceptual data model. Conceptual models are implementation-independent and can be transformed in systematic ways for implementation using different platforms, eg traditional database management systems. This paper describes the basics of the most widely used conceptual modelling notations, the ER (entity-relationship) model and the class diagrams of the UML (unified modelling language), and illustrates their use through several examples from bioinformatics. In particular, models are presented for protein structures and motifs, and for genomic sequences.  相似文献   
110.
Based on NMR spectroscopic information about the allosamidin-hevamine complex, ab initio MO calculations of the ring current effect of the aromatic moieties of Trp255, Tyr183 and Tyr6 of hevamine were carried out to investigate the role of these amino acid residues in binding interactions with allosamidin in solution. In addition, the intermolecular steric compression effect on the 13C chemical shifts of the allosamizoline carbon atoms and the hydrogen bonding to Glu127 was identified. It can be inferred that the binding forces are strongest in the allosamizoline moiety of allosamidin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号