首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   89篇
  2022年   3篇
  2021年   20篇
  2020年   10篇
  2019年   17篇
  2018年   23篇
  2017年   19篇
  2016年   28篇
  2015年   49篇
  2014年   50篇
  2013年   62篇
  2012年   82篇
  2011年   91篇
  2010年   53篇
  2009年   38篇
  2008年   64篇
  2007年   61篇
  2006年   57篇
  2005年   68篇
  2004年   62篇
  2003年   50篇
  2002年   40篇
  2001年   22篇
  2000年   15篇
  1999年   10篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   16篇
  1991年   10篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1971年   4篇
  1969年   3篇
  1967年   3篇
  1966年   4篇
排序方式: 共有1133条查询结果,搜索用时 15 毫秒
141.
To identify and gain a better understanding of the cadherin-like receptor-binding site on Bacillus thuringiensis Cry toxins, it is advantageous to use Cry1Aa toxin, because its 3D structure is known. Therefore, Cry1Aa toxin was used to examine the locations of cadherin-like protein-binding sites. Initial experiments examining the binding compatibility for Cry1Aa toxin of partial fragments of recombinant proteins of a 175kDa cadherin-like protein from Bombyx mori (BtR175) and another putative receptor for Cry1Aa toxin, amino peptidaseN1, from Bo.mori (BmAPN1), suggested that their binding sites are close to each other. Of the seven mAbs against Cry1Aa toxin, two mAbs were selected that block the binding site for BtR175 on Cry1Aa toxin: 2A11 and 2F9. Immunoblotting and alignment analyses of four Cry toxins revealed amino acids that included the epitope of mAb 2A11, and suggested that the area on Cry1Aa toxin blocked by the binding of mAb 2A11 is located in the region consisting of loops2 and 3. Two Cry1Aa toxin mutants were constructed by substituting a Cys on the area blocked by the binding of mAb 2A11, and the small blocking molecule, N-(9-acridinyl)maleimide, was introduced at each Cys substitution to determine the BtR175-binding site. Substitution of Tyr445 for Cys had a crippling effect on binding of Cry1Aa toxin to BtR175, suggesting that Tyr445 may be in or close to the BtR175-binding site. Monoclonal antibodies that blocked the binding site for BtR175 on Cry1Aa toxin inhibited the toxicity of Cry1Aa toxin against Bo.mori, indicating that binding of Cry1Aa toxin to BtR175 is essential for the action of Cry1Aa toxin on the insect.  相似文献   
142.
BACKGROUND INFORMATION: The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe (2004) Cell Struct. Funct. 29, 85-90]. RESULTS: In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295-amino-acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn-Pro-Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti-ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V-ATPase (vacuolar H+-ATPase) on the vesicle membrane around the CV was also detected. CONCLUSIONS: Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V-ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.  相似文献   
143.

Background

Multiple cellular functions are compromised in amyotrophic lateral sclerosis (ALS). In familial ALS (FALS) with Cu/Zn superoxide dismutase (SOD1) mutations, the mechanisms by which the mutation in SOD1 leads to such a wide range of abnormalities remains elusive.

Methodology/Principal Findings

To investigate underlying cellular conditions caused by the SOD1 mutation, we explored mutant SOD1-interacting proteins in the spinal cord of symptomatic transgenic mice expressing a mutant SOD1, SOD1Leu126delTT with a FLAG sequence (DF mice). This gene product is structurally unable to form a functional homodimer. Tissues were obtained from both DF mice and disease-free mice expressing wild-type with FLAG SOD1 (WF mice). Both FLAG-tagged SOD1 and cross-linking proteins were enriched and subjected to a shotgun proteomic analysis. We identified 34 proteins (or protein subunits) in DF preparations, while in WF preparations, interactions were detected with only 4 proteins.

Conclusions/Significance

These results indicate that disease-causing mutant SOD1 likely leads to inadequate protein-protein interactions. This could be an early and crucial process in the pathogenesis of FALS.  相似文献   
144.
Gastric inhibitory polypeptide (GIP) is an incretin that potentiates insulin secretion from pancreatic beta-cells by binding to GIP receptor (GIPR) and subsequently increasing the level of intracellular adenosine 3',5'-cyclic monophosphate (cAMP). We have identified a novel GIPR splice variant in mouse beta-cells that retains intron 8, resulting in a COOH-terminal truncated form (truncated GIPR). This isoform was coexpressed with full-length GIPR (wild-type GIPR) in normal GIPR-expressing tissues. In an experiment using cells transfected with both GIPRs, truncated GIPR did not lead to cAMP production induced by GIP but inhibited GIP-induced cAMP production through wild-type GIPR (n = 3-4, P < 0.05). Wild-type GIPR was normally located on the cell surface, but its expression was decreased in the presence of truncated GIPR, suggesting a dominant negative effect of truncated GIPR against wild-type GIPR. The functional relevance of truncated GIPR in vivo was investigated. In high-fat diet-fed obese mice (HFD mice), blood glucose levels were maintained by compensatory increased insulin secretion (n = 8, P < 0.05), and cAMP production (n = 6, P < 0.01) and insulin secretion (n = 10, P < 0.05) induced by GIP were significantly increased in isolated islets, suggesting hypersensitivity of the GIPR. Total GIPR mRNA expression was not increased in the islets of HFD mice, but the expression ratio of truncated GIPR to total GIPR was reduced by 32% compared with that of control mice (n = 6, P < 0.05). These results indicate that a relative reduction of truncated GIPR expression may be involved in hypersensitivity of GIPR and hyperinsulinemia in diet-induced obese mice.  相似文献   
145.
Background information. The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe ( 2004 ) Cell Struct. Funct. 29 , 85–90]. Results. In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295‐amino‐acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn‐Pro‐Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti‐ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V‐ATPase (vacuolar H+‐ATPase) on the vesicle membrane around the CV was also detected. Conclusions. Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V‐ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.  相似文献   
146.
147.
RECQL1 and RECQL5 as well as BLM reportedly interact with TOP3alpha whose defect is lethal for the cell. Therefore in this study, we characterized recql5/recql1/blm triple mutants from DT40 cells to determine whether the triple mutants show a top3alpha disrupted cell-like phenotype. The triple mutants are viable. Moreover, both blm/recql1 and recql5/blm cells, and recql5/recql1/blm cells grew slightly slower than blm cells, that is, triple mutant cells grew almost the same rate as either of the double mutant cells. The blm cells showed sensitivity to methyl methanesulfonate (MMS) and ultraviolet light (UV), about a 10-fold increase in sister chromatid exchange (SCE), and about a 3-fold increase in damage-induced mitotic chiasma compared to wild-type cells. The triple mutants showed the same sensitivity to MMS or UV and the same frequency of damage-induced mitotic chiasma compared to those of blm cells, indicating that unlike BLM, RECQL1 and RECQL5 play a little role in the repair of or tolerance to DNA damages. However, recql5/blm cells showed higher frequency of SCE than blm cells, whereas the RECQL1 gene disruption had no effect on SCE in blm cells and even in recql5/blm cells.  相似文献   
148.
149.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L ‐3,4‐dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT‐ or DOPA‐positive cells between the UV‐irradiated cultures and the non‐irradiated cultures. We then examined the effects of UV light on KIT‐positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase‐positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with α‐melanocyte‐stimulating hormone (α‐MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase‐negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal‐regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as α‐MSH and/or endothelin‐1.  相似文献   
150.
We have previously reported that two trypsin-like enzymes, acrosin and spermosin, play key roles in sperm penetration through the vitelline coat of the ascidian (Urochordata) Halocynthia roretzi [Sawada et al. (1984), J. Biol. Chem. 259, 2900-2904; Sawada et al. (1984), Dev. Biol. 105, 246-249]. Here, we show the amino-acid sequence of the ascidian preprospermosin, which is deduced from the nucleotide sequence of the isolated cDNA clone. The isolated ascidian preprospermosin cDNA consisted of 1740 nucleotides, and an open reading frame encoding 388 amino acids, which corresponds to a molecular mass of 41 896 Da. By sequence alignment, it was suggested that His178, Asp230 and Ser324 make up a catalytic triad and that ascidian spermosin be classified as a novel trypsin family member. The mRNA of preprospermosin is specifically expressed in ascidian gonads but not in other tissues. Purified spermosin consists of 33- and 40-kDa bands as determined by SDS/PAGE under nonreducing conditions. The 40-kDa spermosin consists of a heavy chain (residues 130-388) and a long light chain designated L1 (residues 23-129), whereas the 33-kDa spermosin includes the same heavy chain and a shorter light chain designated L2 (residues 97-129). The L1 chain contains a proline-rich region, designated L1(DeltaL2) which is lacking in L2. Investigation with the glutathione-S-transferase (GST)-spermosin-light-chain fusion proteins, including GST-L1, GST-L2, and GST-L1(DeltaL2), revealed that the proline-rich region in the L1 chain binds to the vitelline coat of ascidian eggs. Thus, we propose that sperm spermosin is a novel trypsin-like protease that binds to the vitelline coat and also plays a part in penetration of sperm through the vitelline coat during ascidian fertilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号