首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.  相似文献   
12.

Background  

Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge.  相似文献   
13.
14.

Background

Irreversible airflow obstruction in Chronic Obstructive Pulmonary Disease (COPD) is thought to result from airway remodelling associated with aberrant inflammation. Patients who experience frequent episodes of acute deterioration in symptoms and lung function, termed exacerbations, experience a faster decline in their lung function, and thus over time greater disease severity However the mechanisms by which these episodes may contribute to decreased lung function are poorly understood.This study has prospectively examined changes in sputum levels of inflammatory cells, MMP-9 and TIMP-1 during exacerbations comparing with paired samples taken prior to exacerbation.

Methods

Nineteen COPD patients ((median, [IQR]) age 69 [63 to 74], forced expiratory volume in one second (FEV1) 1.0 [0.9 to1.2], FEV1% predicted 37.6 [27.3 to 46.2]) provided sputa at exacerbation. Of these, 12 were paired with a samples collected when the patient was stable, a median 4 months [2 to 8 months] beforehand.

Results

MMP-9 levels increased from 10.5 μg/g [1.2 to 21.1] prior to exacerbation to 17.1 μg/g [9.3 to 48.7] during exacerbation (P < 0.01). TIMP-1 levels decreased from 3.5 μg/g [0.6 to 7.8] to 1.5 μg/g [0.3 to 4.9] (P = 0.16). MMP-9/TIMP-1 Molar ratio significantly increased from 0.6 [0.2 to 1.1] to 3.6 [2.0 to 25.3] (P < 0.05). Neutrophil, eosinophil and lymphocyte counts all showed significant increase during exacerbation compared to before (P < 0.05). Macrophage numbers remained level. MMP-9 levels during exacerbation showed highly significant correlation with both neutrophil and lymphocyte counts (Rho = 0.7, P < 0.01).

Conclusion

During exacerbation, increased inflammatory burden coincides with an imbalance of the proteinase MMP-9 and its cognate inhibitor TIMP-1. This may suggest a pathway connecting frequent exacerbations with lung function decline.  相似文献   
15.
GC Vanlerberghe  L McIntosh    JY Yip 《The Plant cell》1998,10(9):1551-1560
Using in organellar assays, we found that significant tobacco alternative oxidase (AOX) activity is dependent on both reduction of a putative regulatory disulfide bond and the presence of pyruvate, which may interact with a Cys sulfhydryl. This redox modulation and pyruvate activation thus may be important in determining the partitioning of electrons to AOX in vivo. To investigate these regulatory mechanisms, we generated tobacco plants expressing mutated AOX proteins. Mutation of the most N-terminal Cys residue (Cys-126) to an Ala residue produced an AOX that could not be converted to the disulfide-linked form, thus identifying this Cys residue as being responsible for redox modulation. Although this mutation might be expected to produce an AOX with constitutive high activity in the presence of pyruvate, we found it to have minimal in organellar activity in the presence of pyruvate. Nonetheless, the Cys-126 mutation did not appear to have compromised the catalytic function of AOX, given that cells expressing the protein displayed high rates of cyanide-resistant respiration in vivo. The striking difference between in vivo and in organellar results suggests that an additional mechanism(s), as yet unidentified by in organellar assays, may promote activity in vivo. Mutation of the Cys residue nearest the presumptive active site (Cys-176) to an Ala residue did not prevent disulfide bond formation or affect the ability of AOX to be stimulated by pyruvate, indicating that this Cys residue is involved in neither redox modulation nor pyruvate activation.  相似文献   
16.
Diel movements of Orange–Vaal smallmouth yellowfish Labeobarbus aeneus (Burchell, 1822) in the Vaal River, South Africa, were determined by externally attaching radio transmitters to 11 adult fish and manually tracking them between March and May 2012. Twenty-four radio telemetry monitoring surveys produced 2 304 diel tracks. At night, yellowfish displayed a preference for slow shallow (<0.3?m s?1, <0.5?m) and fast shallow habitats (>0.3?m s?1, <0.3?m), whereas by day they avoided these habitats, preferring fast deep areas (>0.3?m s?1, >0.3?m). The average total distance of 272?m moved per 24-hour period was three times greater than the diel range, and the average maximum displacement per minute was significantly higher in daytime (4?m) than at night (1.5?m). These findings suggest that L. aeneus is active primarily during the day in fast-flowing, deeper waters, and relatively inactive at night, when it occupies shallower habitats. This behaviour should be further explored to identify causal mechanisms underlying the diel habitat shifts in this species such as water temperature, foraging tactics and/or predator avoidance.  相似文献   
17.
Thirty-four senior dogs (pointers 8 - 11 years, beagles 9 - 11 years) were used to evaluate the effects of oligosaccharides on nutritional and immunological characteristics. Dogs were randomly allotted to treatments [1% chicory (CH), 1% mannan-oligosaccharide (MOS), 1% chicory + 1% MOS (CM), or no supplementation (control, CON)] in a parallel design with a 4 week baseline period followed by a 4 week treatment period. Dietary supplementation with MOS or CM tended (P = 0.07) to increase food intake due, in part, to an increase in fermentable fibre and a decrease in energy content of the diet. Although wet faecal output increased (P < 0.05) for dogs supplemented with MOS or CM, when corrected for food intake, no differences were noted. The CM treatment increased (P < 0.05) faecal score (1 = hard and dry, 5 = watery liquid), although these scores remained in a desirable range (3 to 3.5). Chicory supplementation increased (P = 0.07) fat digestibility. Chicory or MOS increased (P  0.05) faecal bifidobacteria concentrations 0.4 and 0.5 log10 cfu/g DM, respectively, compared to the CON, while MOS decreased (P < 0.05) faecal E. coli concentrations. Oligosaccharides did not affect white blood cell (WBC) concentrations, but CH and CM tended to increase (P = 0.10) neutrophil concentrations compared to control dogs. Peripheral lymphocyte concentrations were decreased in dogs supplemented with MOS (P = 0.06) and CM (P < 0.05). Chicory and MOS alter faecal microbial populations and certain indices of the immune system of senior dogs.  相似文献   
18.

Background

Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study.

Results

Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this “gold-standard” comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues.

Conclusions

Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-649) contains supplementary material, which is available to authorized users.  相似文献   
19.
The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.  相似文献   
20.
Estimates of tag retention and tagging-related mortality are essential for mark-recapture experiments. Mortality and tag loss were estimated from 15 tigerfish Hydrocynus vittatus marked using Hallmark model PDL plastic-tipped dart tags released into a 1 730 m2 pond at Kamutjonga Inland Fisheries Institute, Namibia, and inspected bi-monthly for the presence or absence of tags. No mortality was observed during the experiment. All marked fish had lost their tags after 10 months and 50% tag loss was estimated at 3.9 months. The high tag loss rate indicates that PDL plastic-tipped dart tags are not suitable for long-term studies on this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号