首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3077篇
  免费   268篇
  国内免费   5篇
  2023年   11篇
  2022年   13篇
  2021年   53篇
  2020年   35篇
  2019年   35篇
  2018年   59篇
  2017年   40篇
  2016年   68篇
  2015年   126篇
  2014年   127篇
  2013年   193篇
  2012年   236篇
  2011年   207篇
  2010年   117篇
  2009年   146篇
  2008年   181篇
  2007年   160篇
  2006年   182篇
  2005年   146篇
  2004年   150篇
  2003年   166篇
  2002年   142篇
  2001年   70篇
  2000年   61篇
  1999年   58篇
  1998年   29篇
  1997年   21篇
  1996年   23篇
  1995年   24篇
  1994年   21篇
  1993年   15篇
  1992年   34篇
  1991年   31篇
  1990年   40篇
  1989年   20篇
  1988年   28篇
  1987年   22篇
  1986年   20篇
  1985年   14篇
  1984年   15篇
  1983年   18篇
  1982年   18篇
  1981年   13篇
  1980年   14篇
  1979年   26篇
  1978年   15篇
  1976年   12篇
  1975年   11篇
  1974年   14篇
  1966年   10篇
排序方式: 共有3350条查询结果,搜索用时 15 毫秒
971.
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.  相似文献   
972.
Although the amiloride-sensitive epithelial sodium channel (ENaC) plays an important role in the modulation of alveolar liquid clearance, the precise mechanism of its regulation in alveolar epithelial cells is still under investigation. Protein kinase C (PKC) has been shown to alter ENaC expression and activity in renal epithelial cells, but much less is known about its role in alveolar epithelial cells. The objective of this study was to determine whether PKC activation modulates ENaC expression and transepithelial Na+ transport in cultured rat alveolar epithelial cells. Alveolar type II cells were isolated and cultured for 3 to 4 d before they were stimulated with phorbol 12-myristate 13-acetate (PMA 100 nmol/L) for 4 to 24 h. PMA treatment significantly decreased alpha, beta, and gammaENaC expression in a time-dependent manner, whereas an inactive form of phorbol ester had no apparent effect. This inhibitory action was seen with only 5-min exposure to PMA, which suggested that PKC activation was very important for the reduction of alphaENaC expression. The PKC inhibitors bisindolylmaleimide at 2 micromol/L and G?6976 at 2 micromol/L diminished the PMA-induced suppression of alphaENaC expression, while rottlerin at 1 micromol/L had no effect. PMA elicited a decrease in total and amiloride-sensitive current across alveolar epithelial cell monolayers. This decline in amiloride-sensitive current was not blocked by PKC inhibitors except for a partial inhibition with bisindolylmaleimide. PMA induced a decrease in rubidium uptake, indicating potential Na+-K+-ATPase inhibition. However, since ouabain-sensitive current in apically permeabilized epithelial cells was similar in PMA-treated and control cells, the inhibition was most probably related to reduced Na+ entry at the apical surface of the cells. We conclude that PKC activation modulates ENaC expression and probably ENaC activity in alveolar epithelial cells. Ca2+-dependent PKC is potentially involved in this response.  相似文献   
973.
Spherulites are multilamellar vesicles obtained by shearing a lamellar phase of lipids and surfactants. They consist of concentric bilayers of amphiphiles alternating with layers of aqueous medium in which hydrophilic drugs can be sequestered with high yield. To be useful for drug targeting applications, spherulites should be small and long circulating. The objectives of this work were threefold. First, the spherulite size was optimized to obtain a mean diameter of less than 300 nm. Second, the vesicle composition was adjusted to minimize in vitro leakage of internal content. Third, the spherulites were coated with 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy poly(ethylene glycol)] (DSPE-PEG) to impart them with a long half-life. Then, the PEGylated spherulites (Phospholipon 90G/Solutol HS15/cholesterol/DSPE-PEG 2000 or 5000) were loaded with 1-beta-d-arabinofuranosylcytosine (ara-C) and injected intravenously to rats. They were compared to uncoated spherulites and to an ara-C solution. The surface-modified vesicles exhibited long circulation times with areas under the blood concentration vs. time curve exceeding by 3.1- to 6.9-fold that of uncoated spherulites. Similarly, blood levels of ara-C encapsulated in PEGylated vesicles were higher than those of the controls, but they did not parallel the carrier pharmacokinetics. Two hours post-injection, most of the drug was cleared from the systemic circulation, reflecting rapid leakage of ara-C from the vesicles.  相似文献   
974.
Type III secretion (T3S) systems play key roles in pathogenicity of many Gram-negative bacteria and are employed to inject toxins directly into the cytoplasm of target cells. They are composed of over 20 different proteins that associate into a basal structure that traverses both inner and outer bacterial membranes and a hollow, needle-like structure through which toxins travel. The PscF protein is the main component of the Pseudomonas aeruginosa T3S needle. Here we demonstrate that PscF, when purified on its own, is able to form needle-like fibers of 8 nm in width and >1 microm in length. In addition, we demonstrate for the first time that the T3S needle subunit requires two cytoplasmic partners, PscE and PscG, in P. aeruginosa, which trap PscF in a ternary, 1:1:1 complex, thus blocking it in a monomeric state. Knock-out mutants deficient in PscE and PscG are non-cytotoxic, lack PscF, and are unable to export PscF encoded extrachromosomally. Temperature-scanning circular dichroism measurements show that the PscE-PscF-PscG complex is thermally stable and displays a cooperative unfolding/refolding pattern. Thus, PscE and PscG prevent PscF from polymerizing prematurely in the P. aeruginosa cytoplasm and keep it in a secretion prone conformation, strategies which may be shared by other pathogens that employ the T3S system for infection.  相似文献   
975.
Buffers change the electric signals of light-excited bacteriorhodopsin molecules in purple membrane if their concentration and the pH of the low-salt solution are properly selected. "Positive" buffers produce a positive component, and "negative" buffers a negative component in addition to the signals due to proton pumping. Measurement of the buffer effects in the presence of glycyl-glycine or bis-tris propane revealed an increase of approximately 2 and a change of sign and a decrease to approximately -0.5 in the translocated charge in these cases, respectively. These factors do not depend on temperature. The Arrhenius parameters established from the evaluation of the kinetics indicate activation enthalpies of 35-40 kJ/mol and negative activation entropies for the additional signals. These values agree with those found by surface-bound pH-sensitive probes in the search of the timing of proton release and uptake. The electric signals were also measured in the case of D(2)O solutions with similar results, except for the increased lifetimes. We offer a unified explanation for the data obtained with surface-bound probes and electric signals based on the clusters at extracellular and cytoplasmic sites of bacteriorhodopsin participating in proton release and uptake.  相似文献   
976.
Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus. The toxin displays an exceptionally wide range of pharmacological activity since it binds onto small conductance Ca(2+)-activated K(+) channels and also blocks Kv channels (Shaker, Kv1.2 and Kv1.3). MTX possesses 53-68% sequence identity with HsTx1 and Pi1, two other K(+) channel short chain scorpion toxins cross-linked by four disulfide bridges. These three toxins differ from other K(+)/Cl(-)/Na(+) channel scorpion toxins cross-linked by either three or four disulfide bridges by the presence of an extra half-cystine residue in the middle of a consensus sequence generally associated with the formation of an alpha/beta scaffold (an alpha-helix connected to an antiparallel beta-sheet by two disulfide bridges). Because MTX exhibits an uncommon disulfide bridge organization among known scorpion toxins (C1-C5, C2-C6, C3-C4, and C7-C8 instead of C1-C4, C2-C5, and C3-C6 for three-disulfide-bridged toxins or C1-C5, C2-C6, C3-C7, and C4-C8 for four-disulfide-bridged toxins), we designed and chemically synthesized an MTX analog with three instead of four disulfide bridges ([Abu(19),Abu(34)]MTX) and in which the entire consensus motif of scorpion toxins was restored by the substitution of the two half-cystines in positions 19 and 34 (corresponding to C4 and C8) by two isosteric alpha-aminobutyrate (Abu) derivatives. The three-dimensional structure of [Abu(19), Abu(34)]MTX in solution was solved by (1)H NMR. This analog adopts the alpha/beta scaffold with now conventional half-cystine pairings connecting C1-C5, C2-C6, and C3-C7 (with C4 and C8 replaced by Abu derivatives). This novel arrangement in half-cystine pairings that concerns the last disulfide bridge results mainly in a reorientation of the alpha-helix regarding the beta-sheet structure. In vivo, [Abu(19),Abu(34)]MTX remains lethal in mice as assessed by intracerebroventricular injection of the peptide (LD(50) value of 0. 25 microg/mouse). The structural variations are also accompanied by changes in the pharmacological selectivity of the peptide, suggesting that the organization pattern of disulfide bridges should affect the three-dimensional presentation of certain key residues critical to the blockage of K(+) channel subtypes.  相似文献   
977.
978.
In the context of the cooperative project for functional analysis of novel genes uncovered during the systematic sequencing of the Saccharomyces cerevisiae genome, we deleted two paralogous ORFs: YIL153w and YPL152w. Based on the resulting phenotypes, the corresponding genes were named RRD1 and RRD2, respectively. Rrd proteins show significant similarity to the human phosphotyrosyl phosphatase activator (PTPA). Both single mutants, rrd1delta and rrd2delta, were viable. Deletion of RRD1 caused pleiotropic phenotypes under a wide range of conditions, including sensitivity to Ca2+, vanadate, ketoconazole, cycloheximide and Calcofluor white, and resistance to caffeine and rapamycin. The only phenotypes found for rrd2delta - resistance to caffeine and rapamycin - were weaker than the corresponding phenotypes of rrd1delta. The double mutant rrd1,2delta was inviable on rich glucose medium, but could grow in the presence of an osmotic stabilizer. The rrd1,2delta mutant was partially rescued by inactivation of HOG1 or PBS2, suggesting an interaction between the RRD genes and the Hog1p signal transduction pathway. Introduction of slt2delta into the rrd1,2delta background improved the growth of rrd1,2delta on sorbitol-containing medium, indicating that the Rrd proteins also interact with the Slt2p/Mpk1p signaling pathway. Suppression of the lethal phenotype of the rrd1,2delta mutant by overexpression of PPH22 suggested that the products of the RRD genes function positively with catalytic subunits of PP2A. The synthetic lethality was also suppressed by the "viable" allele (SSD1-v1) of the SSD1 gene.  相似文献   
979.
980.
The marked similarity between the primary structures of human, other vertebrate, and the invertebrate tunicate PACAP suggests that PACAP is one of the most highly conserved peptides during the phylogeny of the metazoans. We investigated the distribution of PACAP-like immunoreactivity in the nervous system of three oligochaete (Annelida) worms with immunocytochemistry. The distribution pattern of immunoreactivity was similar in all three species (Lumbricus terrestris, Eisenia fetida, and Lumbricus polyphemus). The cerebral ganglion contains numerous immunoreactive cells and fibers. A few cells and fibers were found in the medial and lateral parts of the subesophageal and ventral cord ganglia. In the peripheral nervous system, immunoreactivity was found in the enteric nervous system, in epidermal sensory cells, and in the clitellum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号