首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6095篇
  免费   638篇
  国内免费   2篇
  2023年   61篇
  2022年   44篇
  2021年   293篇
  2020年   135篇
  2019年   169篇
  2018年   188篇
  2017年   171篇
  2016年   255篇
  2015年   415篇
  2014年   403篇
  2013年   436篇
  2012年   581篇
  2011年   514篇
  2010年   302篇
  2009年   222篇
  2008年   358篇
  2007年   301篇
  2006年   260篇
  2005年   259篇
  2004年   206篇
  2003年   174篇
  2002年   134篇
  2001年   70篇
  2000年   48篇
  1999年   34篇
  1998年   35篇
  1997年   22篇
  1996年   24篇
  1995年   20篇
  1994年   18篇
  1992年   40篇
  1991年   39篇
  1990年   23篇
  1989年   31篇
  1988年   23篇
  1987年   29篇
  1986年   27篇
  1985年   25篇
  1984年   34篇
  1983年   26篇
  1982年   26篇
  1981年   13篇
  1980年   17篇
  1979年   19篇
  1977年   16篇
  1976年   13篇
  1974年   14篇
  1973年   17篇
  1972年   22篇
  1966年   13篇
排序方式: 共有6735条查询结果,搜索用时 15 毫秒
991.
992.
993.
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).  相似文献   
994.
995.
996.
997.
998.
999.
NMR spectroscopy was used to search for mechanistically significant differences between the thermodynamic and dynamic properties of the 34 kDa (alpha/beta)8-barrel catalytic domain of beta-(1,4)-glycosidase Cex (or CfXyn10A) in its free (apo-CexCD) and trapped glycosyl-enzyme intermediate (2FCb-CexCD) states. The main chain chemical shift perturbations due to the covalent modification of CexCD with the mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-cellobioside are limited to residues within its active site. Thus, consistent with previous crystallographic studies, formation of the glycosyl-enzyme intermediate leads to only localized structural changes. Furthermore, 15N relaxation methods demonstrated that the backbone amide and tryptophan side chains of apo-CexCD are very well ordered on both the nanosecond to picosecond and millisecond to microsecond time scales and that these dynamic features also do not change significantly upon formation of the trapped intermediate. However, covalent modification of CexCD led to the increased protection of many amides and indoles, clustered around the active site of the enzyme, against fluctuations leading to hydrogen exchange. Similarly, thermal denaturation studies demonstrated that 2FCb-CexCD has a significantly higher midpoint unfolding temperature than apo-CexCD. The covalently modified protein also exhibited markedly increased resistance to proteolytic degradation by thermolysin relative to apo-CexCD. Thus, the local and global stability of CexCD increase along its reaction pathway upon formation of the glycosyl-enzyme intermediate, while its structure and fast time scale dynamics remain relatively unperturbed. This may reflect thermodynamically favorable interactions with the relatively rigid active site of Cex necessary to bind, distort, and subsequently hydrolyze glycoside substrates.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号