首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2023篇
  免费   130篇
  2023年   11篇
  2022年   7篇
  2021年   32篇
  2020年   39篇
  2019年   30篇
  2018年   25篇
  2017年   39篇
  2016年   77篇
  2015年   93篇
  2014年   116篇
  2013年   143篇
  2012年   142篇
  2011年   153篇
  2010年   114篇
  2009年   93篇
  2008年   113篇
  2007年   114篇
  2006年   82篇
  2005年   95篇
  2004年   89篇
  2003年   78篇
  2002年   86篇
  2001年   22篇
  2000年   17篇
  1999年   27篇
  1998年   16篇
  1997年   20篇
  1996年   19篇
  1995年   13篇
  1994年   14篇
  1993年   16篇
  1992年   10篇
  1991年   8篇
  1990年   15篇
  1988年   6篇
  1987年   11篇
  1985年   6篇
  1984年   5篇
  1983年   11篇
  1982年   13篇
  1981年   13篇
  1980年   7篇
  1978年   12篇
  1977年   8篇
  1976年   12篇
  1975年   6篇
  1974年   5篇
  1973年   9篇
  1972年   5篇
  1970年   11篇
排序方式: 共有2153条查询结果,搜索用时 18 毫秒
61.
Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyanobacteria, algae, lichens, bryophytes, and other organisms living in association with the top millimeters of soil. Biocrusts are common in many ecosystems and especially drylands. They perform a suite of ecosystem functions: stabilizing soil surfaces to prevent erosion, contributing carbon through photosynthesis, fixing nitrogen, and mediating the hydrological cycle in drylands. Biocrusts have emerged as a potential tool in restoration; developing methods to implement effective biocrust restoration has the potential to return many ecosystem functions and services. Although culture‐based approaches have allowed researchers to learn about the biology, physiology, and cultivation of biocrusts, transferring this knowledge to field implementation has been more challenging. A large amount of research has amassed to improve our understanding of biocrust restoration, leaving us at an opportune time to learn from one another and to join approaches for maximum efficacy. The articles in this special issue improve the state of our current knowledge in biocrust restoration, highlighting efforts to effectively restore biocrusts through a variety of different ecosystems, across scales and utilizing a variety of lab and field methods. This collective work provides a useful resource for the scientific community as well as land managers.  相似文献   
62.
63.
In Vitro Cellular & Developmental Biology - Plant - Texas ebony (Ebenopsis ebano [Berland.] Barneby & J.W. Grimes) is a member of the Fabaceae that is native to Mexico. Its wood has...  相似文献   
64.
The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3′-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.  相似文献   
65.
The influence of operational conditions (pH, temperature and oxygen transfer rate) on the initial reaction rates of the four reactions involved in the 4S biodesulfurization route of dibenzothiophenes (DBT) has been studied. The bioprocess was carried out using a genetically modified organism, Pseudomonas putida CECT 5279. The rates of the four reactions were calculated from the rates of production of different compounds involved in the 4S pathway, by matrix manipulation. The initial (zero time) reaction rates showed a slight dependence on oxygen transfer rate. Temperature and pH were optimal at 30°C and 9, respectively, temperature being the most important variable. This study also identifies the last reaction as the limiting step in the pathway.  相似文献   
66.

Introduction

Anti-TNF drugs have proven to be effective against spondyloarthritis (SpA), although 30% of patients fail to respond or experience adverse events leading to treatment discontinuation. In rheumatoid arthritis, the presence of anti-drug antibodies (ADA) against the first TNF inhibitor influences the outcome after switching. Our aim was to assess whether the response to a second anti-TNF drug is related to the previous development of ADA to the first anti-TNF drug SpA patients.

Methods

Forty-two SpA patients began a second anti-TNF drug after failing to respond to the first anti-TNF therapy. Clinical activity was assessed by the Ankylosing Spondylitis Disease Activity Score (ASDAS) at baseline (at the beginning of the first and second anti-TNF therapy) and at 6 months after switching. The drug and ADA levels were measured by ELISA before each administration.

Results

All patients were treated with anti-TNF drugs and mainly due to inefficacy were switched to a second anti-TNF drug. Eleven of 42 (26.2%) developed ADA during the first biologic treatment. At baseline, no differences in ASDAS were found in patients with or without ADA to the first anti-TNF drug (3.52 ± 1.03 without ADA vs. 3.14 ± 0.95 with ADA, p = 0.399) and to the second anti-TNF drug (3.36 ± 0.94 without ADA vs. 3.09 ± 0.91 with ADA, p = 0.466). At 6 months after switching, patients with previous ADA had lower disease activity (1.62 ± 0.93 with ADA vs. 2.79 ± 1.01 without ADA, p = 0.002) and most patients without ADA had high disease activity state by the ASDAS (25 out of 31 (80.6%) without ADA vs. 3 out of 11 (27.3%) with ADA, p = 0.002).

Conclusions

In SpA the failure to respond to the first anti-TNF drug due to the presence of ADA predicts a better clinical response to a second anti-TNF drug.  相似文献   
67.
68.
Biological soil crusts (BSCs) cover non-vegetated areas in most arid and semiarid ecosystems. BSCs play a crucial role in the redistribution of water and sediments and, ultimately, in the maintenance of ecosystem function. The effects of BSCs on water infiltration are complex. BSCs increase porosity and micro-topography, thus enhancing infiltration, but, at the same time, they can increase runoff by the secretion of hydrophobic compounds and clogging of soil pores upon wetting. BSCs confer stability on soil surfaces, reducing soil detachment locally; however, they can also increase runoff, which may increase sediment yield. Although the key role of BSCs in controlling infiltration–runoff and erosion is commonly accepted, conflicting evidence has been reported concerning the influence of BSCs on runoff generation. Very little is known about the relative importance of different BSC features such as cover, composition, roughness, or water repellency, and the interactions of these attributes in runoff and erosion. Because BSC characteristics can affect water flows and erosion both directly and indirectly, we examined the direct and indirect effects of different BSC features on runoff and erosion in a semiarid ecosystem under conditions of natural rainfall. We built structural equation models to determine the relative importance of BSC cover and type and their derived surface attributes controlling runoff and soil erosion. Our results show that the hydrological response of BSCs varies depending on rainfall properties, which, in turn, determine the process governing overland flow generation. During intense rainfalls, runoff is controlled not only by rainfall intensity but also by BSC cover, which exerts a strong direct and indirect influence on infiltration and surface hydrophobicity. Surface hydrophobicity was especially high for lichen BSCs, thus masking the positive effect of lichen crust on infiltration, and explaining the lower infiltration rates recorded on lichen than on cyanobacterial BSCs. Under low intensity, rainfall volume exerts a stronger effect than rainfall intensity, and BSC features play a secondary role in runoff generation, reducing runoff through their effect on surface micro-topography. Under these conditions, lichen BSCs presented higher infiltration rates than cyanobacterial BSCs. Our results highlight the significant protective effect against erosion exerted by BSCs at the plot scale, enhancing surface stability and reducing sediment yield in both high- and low-magnitude rainfall events.  相似文献   
69.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   
70.

Background

Mechanical ventilation can promote lung injury by triggering a pro-inflammatory response. Macrolides may exert some immunomodulatory effects and have shown significant benefits over other antibiotics in ventilated patients. We hypothesized that macrolides could decrease ventilator-induced lung injury.

Methods

Adult mice were treated with vehicle, clarithromycin or levofloxacin, and randomized to receive mechanical ventilation with low (12 cmH2O, PEEP 2 cmH2O) or high (20 cmH2O, ZEEP) inspiratory pressures for 150 minutes. Histological lung injury, neutrophil infiltration, inflammatory mediators (NFκB activation, Cxcl2, IL-10) and levels of adhesion molecules (E-selectin, ICAM) and proteases (MMP-9 and MMP-2) were analyzed.

Results

There were no differences among groups after low-pressure ventilation. Clarithromycin significantly decreased lung injury score and neutrophil count, compared to vehicle or levofloxacin, after high-pressure ventilation. Cxcl2 expression and MMP-2 and MMP-9 levels increased and IL-10 decreased after injurious ventilation, with no significant differences among treatment groups. Both clarithromycin and levofloxacin dampened the increase in NFκB activation observed in non-treated animals submitted to injurious ventilation. E-selectin levels increased after high pressure ventilation in vehicle- and levofloxacin-treated mice, but not in those receiving clarithromycin.

Conclusions

Clarithromycin ameliorates ventilator-induced lung injury and decreases neutrophil recruitment into the alveolar spaces. This could explain the advantages of macrolides in patients with acute lung injury and mechanical ventilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号